Project description:Model-guided chassis strain design has the potential to accelerate cellfactory development. In this experiment genetic targets were identified in silico and implemented in vivo to design a yeast chassis strain for enhanced production of succinic, malic and fumaric acid. The phenotype of engineered chassis strains was further optimised through adaptive laboratory evolution. RNA-seq analysis of engineered yeast chassis strains, evolved strains and wild-type (CEN.PK background)was performed to determine the effect of engineered gene deletions and evolution on the transcriptome.
Project description:Mechanobiologic signals play critical roles in regulating cellular responses under both physiologic and pathologic conditions. Using a combination of synthetic biology and tissue engineering, we developed a mechanically-responsive bioartificial tissue that responds to mechanical loading to produce a pre-programmed therapeutic biologic drug. By deconstructing the signaling networks induced by activation the mechanically-sensitive ion channel transient receptor potential vanilloid 4 (TRPV4), we synthesized synthetic TRPV4-responsive genetic circuits in chondrocytes. These cells were then engineered into living tissues that respond to mechanical compression to drive the production of the anti-inflammatory drug interleukin-1 receptor antagonist. Mechanical loading of these tissues in the presence of the cytokine interleukin-1 protected constructs from inflammatory degradation. This “mechanogenetic” approach enables long-term autonomous delivery of therapeutic compounds that is driven by physiologically-relevant mechanical loading with cell-scale mechanical force resolution. The development of synthetic mechanogenetic gene circuits provides a novel approach for the autonomous regulation of cell-based drug delivery systems.
Project description:The new microarray described for Mycobacterium tuberculosis in our study has a more complete reprensentation of the genome than any other array design reported till date. Further, protocols for sample preparation, labelling and hybridisation for accurate gene expression profiling of M.tuberculosis have been optimised.
Project description:Systematic survey of gene and isoform allele-specific expression in human brain and liver tissues, and description of optimised bioinformatic and statistical methods to accurately measure allele-specific expression. DNA-seq data for the same set of samples have been deposited at the European Nucleotide Archive under project accessino PRJEB5279 ( http://www.ebi.ac.uk/ena/data/view/PRJEB5279 ).
Project description:In molecular biology, the design of mechanistic experiments has to be optimized by considering statistical and biological principles. In contrast to statistical principles, biological principles of experimental design are not universally formulated. In an attempt to pinpoint generally acceptable rules, we investigated the importance of determining the optimal ranges of scale of i.e. dose and time in gene expression experiments. We propose a protocol for executing small scale, genome wide, range finding studies, covering a wide range of the potentially relevant part of the design space to find the optimal ranges of experimentation. This protocol is executed and a proof-of-concept is presented, where this approach is tested for both an in-vitro and an in-vivo study that aim to unravel DNA repair mechanisms provoked after UV radiation. We identified four challenges of range finding studies in omics experimentation; (1) the modularity of biological processes, (2) their dynamics, (3) the extent to which end-points indicate biological processes, and (4) the costs associated with the assays, which are all addressed by our approach.
Project description:In molecular biology, the design of mechanistic experiments has to be optimized by considering statistical and biological principles. In contrast to statistical principles, biological principles of experimental design are not universally formulated. In an attempt to pinpoint generally acceptable rules, we investigated the importance of determining the optimal ranges of scale of i.e. dose and time in gene expression experiments. We propose a protocol for executing small scale, genome wide, range finding studies, covering a wide range of the potentially relevant part of the design space to find the optimal ranges of experimentation. This protocol is executed and a proof-of-concept is presented, where this approach is tested for both an in-vitro and an in-vivo study that aim to unravel DNA repair mechanisms provoked after UV radiation. We identified four challenges of range finding studies in omics experimentation; (1) the modularity of biological processes, (2) their dynamics, (3) the extent to which end-points indicate biological processes, and (4) the costs associated with the assays, which are all addressed by our approach.
Project description:Small molecule targeted recruitment of nucleases to RNA is a powerful method to affect RNA biology. Inforna, a sequence-based design approach to target RNA, enables the design of small molecules that bind and cleave RNA in a selective and substoichiometric manner. Herein, we investigate the ability of RNA targeted degradation to improve the selectivity of small molecules targeting RNA. The microRNA-210 hairpin precursor (pre-miR-210) is overexpressed in hypoxic cancers. Previously, a small molecule (Targapremir-210, TGP-210) targeted this RNA in cells, but with only a 5-fold window for DNA binding. Appendage of a nuclease recruitment module onto TGP-210 locally recruited ribonuclease L onto pre-miR-210, triggering its degradation. The chimera has enhanced selectivity compared to TGP-210 with nanomolar binding to the pre-miR-210, but no DNA binding, and is broadly selective for affecting RNA function in cells. Importantly, it cleaved pre-miR-210 substoichiometrically and induced apoptosis in breast cancer cells.
Project description:Effective molecular diagnosis of congenital diseases hinges on comprehensive genomic analysis, traditionally reliant on various methodologies specific to each variant type — whole exome or genome sequencing for single nucleotide variants (SNVs), array CGH for copy-number variants (CNVs), and microscopy for structural variants (SVs). We introduce a novel, integrative approach combining exome sequencing with chromosome conformation capture, termed Exo-C. This method enables the concurrent identification of SNVs in clinically relevant genes and SVs across the genome and allows analysis of heterozygous and mosaic carriers. Enhanced with targeted long-read sequencing, Exo-C evolves into a cost-efficient solution capable of resolving complex SVs at base-pair accuracy. Through several case studies, we demonstrate how Exo-C's multifaceted application can effectively uncover diverse causative variants and elucidate disease mechanisms in patients with rare disorders.