Project description:<p>Marine sponges can host abundant and diverse microbiomes, which can largely influence the metabolism and other phenotypic traits of the host. However, information on the potential relationships between sponge microbiomes and metabolic signatures, other than secondary metabolites explored for biotechnological purposes, needs further investigation. Applying an integrated approach, we investigated the microbiomes associated with 4 ubiquitous Mediterranean sponge species (i.e., Petrosia ficiformis, Chondrosia reniformis, Crambe crambe and Chondrilla nucula), correlated with their metabolomic patterns (in terms of lipidomics) and microbial predicted functions. Microscopy observations of sponge tissues revealed differences in microbial abundances, which, however, were only partially linked to their diversity assessed through metabarcoding. The microbiomes of the 4 sponges showed a species-specific composition and a different core size, which was independent from the microbial diversity of the surrounding seawater. Predicted functions of the associated microbiomes allowed identifying 2 functional host clusters: one more related to heterotrophic pathways and the other more linked to phototrophic activities. Differences in the microbiomes were also associated with different metabolic profiles, mostly due to specific compounds characterizing the host and its microbiome. Overall, this study provides new insights on the functionality of sponges and their prokaryotic symbioses’, and in particular, it discloses a descriptive sketch of the diverse compartments forming the sponge holobiont.</p>
2024-02-21 | MTBLS5125 | MetaboLights
Project description:Microbiomes of bioeroding sponges (family Clionaidae)
Project description:In order to compare sponge and eumetazoan (higher animal) body plans, we identified and studied expression of a broad range of eumetazoan developmental regulatory genes in Sycon ciliatum (Calcispongiae). In this species, embryonic development is semi-synchronous within a population, synchronous within individuals, and oocytes and embryos occupy a significant fraction of the volume of the sponges during the reproductive period. RNASeq libraries representing non-reproductive (somatic) tissue slices along the body axis, as well as oocytes, embryos and free swimming larvae were generated from material obtained by sampling throughout the life cycle.
Project description:In order to compare sponge and eumetazoan (higher animal) body plans, we identified and studied expression of a broad range of eumetazoan developmental regulatory genes in Sycon ciliatum (Calcispongiae). In this species, embryonic development is semi-synchronous within a population, synchronous within individuals, and oocytes and embryos occupy a significant fraction of the volume of the sponges during the reproductive period. RNASeq libraries representing non-reproductive (somatic) tissue slices along the body axis, as well as oocytes, embryos and free swimming larvae were generated from material obtained by sampling throughout the life cycle.
Project description:Polycystic ovary syndrome (PCOS) is the most common and heterogeneous endocrine disorder in women of reproductive age.Depending on different criteria and populations,the prevalence of PCOS ranges from 6 to 8% with the NIH criteria, and up to 20% with the Rotterdam criteria.Further, it accounts for approximately 75% of anovulatory infertility.Circular RNAs (circRNAs) mediate the posttranscriptional regulation of multiple genes by functioning as microRNA (miRNA) sponges. This study aimed to detect the novel expression of circRNAs in the cumulus cells (CCs) of PCOS patients and their potential significance in the pathogenesis of PCOS.
Project description:Intensive research in past two decades has uncovered the presence and importance of noncoding RNAs (ncRNAs), which includes microRNAs (miRs) and long ncRNAs (lncRNAs). These two classes of ncRNAs interact to a certain extent, as some lncRNAs bind to miRs to sequester them. Such lncRNAs are collectively called 'competing endogenous RNAs' or 'miRNA sponges'. In this study, we screened for lncRNAs that may act as miRNA sponges using the publicly available data sets and databases. To uncover the roles of miRNA sponges, loss-of-function experiments were conducted, which revealed the biological roles as miRNA sponges. LINC00324 is important for the cell survival by binding to miR-615-5p leading to the de-repression of its target BTG2 LOC400043 controls several biological functions via sequestering miR-28-3p and miR-96-5p, thereby changing the expressions of transcriptional regulators. Finally, we also screened for circular RNAs (circRNAs) that may function as miRNA sponges. The results were negative at least for the selected circRNAs in this study. In conclusion, miRNA sponges can be identified by applying a series of bioinformatics techniques and validated with biological experiments.
Project description:Intensive research in past two decades has uncovered the presence and importance of noncoding RNAs (ncRNAs), which includes microRNAs (miRs) and long ncRNAs (lncRNAs). These two classes of ncRNAs interact to a certain extent, as some lncRNAs bind to miRs to sequester them. Such lncRNAs are collectively called 'competing endogenous RNAs' or 'miRNA sponges'. In this study, we screened for lncRNAs that may act as miRNA sponges using the publicly available data sets and databases. To uncover the roles of miRNA sponges, loss-of-function experiments were conducted, which revealed the biological roles as miRNA sponges. LINC00324 is important for the cell survival by binding to miR-615-5p leading to the de-repression of its target BTG2 LOC400043 controls several biological functions via sequestering miR-28-3p and miR-96-5p, thereby changing the expressions of transcriptional regulators. Finally, we also screened for circular RNAs (circRNAs) that may function as miRNA sponges. The results were negative at least for the selected circRNAs in this study. In conclusion, miRNA sponges can be identified by applying a series of bioinformatics techniques and validated with biological experiments.
2016-07-06 | GSE73689 | GEO
Project description:Gut microbiomes and reproductive isolation in Drosophila