Project description:In vitro production (IVP) has been shown to affect embryonic gene expression and often result in large offspring syndrome (LOS) in cattle and sheep. To dissect the effects of in vitro maturation, fertilization and culture, we compared the expression profiles of single bovine blastocysts generated by: 1) in vitro maturation, fertilization and culture (IVF); 2) in vivo maturation, fertilization and in vitro culture (IVD); and 3) in vivo maturation, fertilization and development (AI). To conduct expression profiling, total RNA was isolated from individual embryos, linearly amplified and hybridized to a custom bovine cDNA microarray containing approximately 6,300 unique genes. There were 306, 367 and 200 genes differentially expressed between the AI and IVD, IVF and IVD and AI and IVF comparisons, respectively. Interestingly, 44 differentially expressed genes were identified between the AI embryos and both the IVF and IVD embryos, making these potential candidates for LOS. There were 60 genes differentially expressed between the IVF embryos and the AI and IVD embryos. The Gene Ontology category “RNA processing” was over-represented among the genes that were down-regulated in the IVF embryos, indicating an effect of in vitro oocyte maturation/fertilization on embryonic gene expression. A culture effect on the expression of genes involved in translation was also observed by the comparison of AI to IVD embryos. Keywords: developmental condition
Project description:In vitro production (IVP) has been shown to affect embryonic gene expression and often result in large offspring syndrome (LOS) in cattle and sheep. To dissect the effects of in vitro maturation, fertilization and culture, we compared the expression profiles of single bovine blastocysts generated by: 1) in vitro maturation, fertilization and culture (IVF); 2) in vivo maturation, fertilization and in vitro culture (IVD); and 3) in vivo maturation, fertilization and development (AI). To conduct expression profiling, total RNA was isolated from individual embryos, linearly amplified and hybridized to a custom bovine cDNA microarray containing approximately 6,300 unique genes. There were 306, 367 and 200 genes differentially expressed between the AI and IVD, IVF and IVD and AI and IVF comparisons, respectively. Interestingly, 44 differentially expressed genes were identified between the AI embryos and both the IVF and IVD embryos, making these potential candidates for LOS. There were 60 genes differentially expressed between the IVF embryos and the AI and IVD embryos. The Gene Ontology category M-bM-^@M-^\RNA processingM-bM-^@M-^] was over-represented among the genes that were down-regulated in the IVF embryos, indicating an effect of in vitro oocyte maturation/fertilization on embryonic gene expression. A culture effect on the expression of genes involved in translation was also observed by the comparison of AI to IVD embryos. Reference design with dye swap. 43 individual embryos were analyzed.
Project description:Blastocysts were transferred either (1) after in vivo fertilization and development (control group) or (2) after in vitro fertilization and embryo culture. Placentas were then analyzed at E10.5.
Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.
Project description:Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve up-regulated genes including LOC101500970, LOC101506539 and down-regulated genes LOC101493897, LOC101491695 and so on. Transcription factor families including UDP-glucuronyltransferase, NAC transcription factor, heat shock transcription factor, and auxin-responsive transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds.