Project description:Background: Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. Objective: We hypothesized that children raised in farm environments have a lower incidence of viral illnesses over the first two years of life than non-farm children. We also analyzed between farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. Methods: The Wisconsin Infant Study Cohort (WISC) birth cohort enrolled farm and non-farm pregnant women from central Wisconsin. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression at age two years was compared to farm exposure and respiratory illness history. Results: There was a higher rate of respiratory illnesses in the non-farm vs. farm group (rate ratio 0.82 [0.69,0.97], p=0.020), but no significant differences in wheezing illnesses. There was a stepwise reduction in rates of respiratory illnesses in children exposed at least weekly to 0, 1, or ≥2 animals (p=0.006). In analyzing nasal cell gene expression, farm exposures and preceding respiratory illnesses were positively related to gene signatures for mononuclear cells and innate and antimicrobial responses. Conclusions: Children exposed to farms and farm animals had lower rates of respiratory illnesses over the first two years of life. Both farm exposures and preceding respiratory illnesses were associated with increased innate immune responses, suggesting that these exposures stimulate mucosal immune responses to reduce subsequent illness frequency.
Project description:Background: Microbial interventions against allergic asthma have robust epidemiologic underpinnings and the potential to recalibrate disease-inducing immune responses. Oral administration of OM-85, a standardized lysate of human airways bacteria, is widely used empirically to prevent respiratory infections, and a clinical trial is testing its ability to prevent asthma in at-risk children. On the other hand, we previously showed that intra-nasal administration of products from microbe-rich farm environments abrogate experimental allergic asthma. Objectives: To investigate whether direct administration of OM-85 to the airway compartment protects against experimental allergic asthma, and to identify protective cellular and molecular mechanisms activated through this natural route. Methods: BALB/cJ mice (7-8 weeks old) sensitized and challenged with Ovalbumin received OM-85 intra-nasally, and cardinal cellular and molecular asthma phenotypes were measured. Murine lung gene expression was profiled by RNA-sequencing. Results: Airway administration of OM-85 suppressed allergic asthma and altered the transcriptome profile in unfractionated lung tissue. Conclusion We provide the first demonstration that administration of a standardized bacterial lysate to the airway compartment protects from experimental allergic asthma by engaging multiple immune pathways.
Project description:The gram- positive bacterial pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) causes huge economic losses by infecting tomato plants worldwide. Cmm can be spread by contaminated seeds and transplants, penetrating the plant through natural openings or wounds and is transferred through the plant xylem. While in recent years significant progress has been made to elucidate plant responses to pathogenic gram-negative bacteria by gene expression studies, the molecular mechanisms that lead to disease symptoms caused by gram-positive bacteria like Cmm remain elusive. An indigenous virulent Cmm strain isolated from a farm crop of Pomodoro tomatoes in southern Greece was used for the infection of EKSTASIS F1 hybrid tomato seedlings. Here, we present the results of a deep RNA- sequencing (RNA-seq) analysis performed to characterize the dynamic expression profile of tomato genes upon Cmm infection.
Project description:In this study, samples of 16 dairy cows from a MAP infected farm were used. Serum, milk and fecal samples were collected. Categorizing these cows into two groups based on their MAP infection status different standard methods for detection MAP were applied. Healthy controls showed no positive results in enzyme-linked immunosorbent assay (ELISA) with serum and milk samples (cattletype MAP Ab, Qiagen, Hilden, Germany; In-direct, IDVet, Grabels, France) and after cultivation of fecal samples on commercial Her-rold´s Egg Yolk Agars (HEYM agar, Becton Dickinson, Heidelberg, Germany) for 12 weeks. Cows with positive results were grouped into MAP infected cows. Specifically, for mass spectrometry analysis serum of seven MAP infected cows and seven healthy controls were used. All animals were from the same farm and were kept under the same environmental conditions. For additional mass spectrometry analysis with a further control group sam-ples of 21 dairy cows from an uninfected farm were examined. All cattle from this farm showed negative results in ELISA with serum and milk samples. Additionally, there was never a positive result in regularly tested fecal samples and sock swab samples of this farm. For verification of differential CTSS expression in Western blot analysis five dairy cows from another infected farm were consultedincluded. MAP status of these cows was analyzed by cultivation of fecal samples on HEYM agar for 12 weeks and ELISA with se-rum samples. In detail, two cattle were categorized into healthy controls and three cattle into MAP infected cows. Withdrawal of bovine venous whole blood and experi-mental protocols were approved by the local authority, Government of Upper Bavaria, permit no. ROB-55.2-2532.Vet_03-17-106.
Project description:Background: Inhalation exposure to biological particulate matter (BioPM) from livestock farms may provoke exacerbations in subjects suffering from allergy and asthma. The aim of this study was to use a murine model of allergic asthma to determine the effect of BioPM derived from goat farm on airway allergic responses Methods: Fine (< 2.5 μm) BioPM was collected from an indoor goat stable. Female BALB/c mice were ovalbumin (OVA) sensitized and challenged with OVA or saline as control. The OVA and saline groups were divided in sub-groups and exposed intranasally to different concentrations (0, 0.9, 3, or 9 μg) of goat farm BioPM. Bronchoalveolar lavage fluid (BALF), blood and lung tissues were collected. Results: In saline-challenged mice, goat farm BioPM alone induced a dose-dependent increase in neutrophils in BALF and induced production of macrophage inflammatory protein-3a). In OVA-challenged mice, BioPM significantly enhanced 1) inflammatory cells in BALF, 2) OVA-specific Immunoglobulin (Ig)G1, 3) interleukin-23 production, 4) airway mucus secretion-specific gene expression. RNAseq analysis of lungs indicates that neutrophil chemotaxis and oxidation-reduction processes were the representative genomic pathways in saline and OVA-challenged mice, respectively. Conclusions: A single exposure to goat farm BioPM enhanced airway inflammation in both saline and OVA-challenged allergic mice, with neutrophilic response as Th17 disorder and eosinophilic response as Th2 disorder indicative of the severity of allergic responses. Identification of the mode of action by which farm PM interacts with airway allergic pathways will be useful to design potential therapeutic approaches.
Project description:We profiled the expression of circulating microRNAs (miRNAs) in mice exposed to gram-positive and gram-negative bacteria using Illumina small RNA deep sequencing. Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14+Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.
Project description:Asthma is caused by a combination of poorly understood genetic and environmental factors. We found multiple markers on chromosome 17q21 to be strongly and reproducibly associated with childhood onset asthma in family and case-referent panels with a combined P < 10-12. In independent replication studies the 17q21 locus showed strong association with diagnosis of childhood asthma in 2,320 subjects from a cohort of German children (P = 0.0003) and in 3,301 subjects from the British 1958 Birth Cohort (P = 0.0005). We systematically evaluated the relationships between markers of the 17q21 locus and transcript levels of genes in EBV-transformed lymphoblastoid cell lines from children in the asthma family panel used in our association study. The SNPs associated with childhood asthma were consistently and strongly associated (P <10-22) in cis with transcript levels of ORMDL3, a member of a gene family that encode transmembrane proteins anchored in the endoplasmic reticulum. The results indicate that genetic variants regulating ORMDL3 expression are determinants of susceptibility to childhood asthma. Experiment Overall Design: Gene expression levels were evaluated in 404 children. We then evaluated the relationship between SNPs in the 17q21 region (which show association to asthma in the same children) with gene expression levels. See http://www.sph.umich.edu/csg/liang/asthma/