Project description:The two obstacles that impede a wider application of genetically modified cells expressing therapeutic transgenes for ex vivo gene therapy are the immune mediated rejection of the transplanted cells, combined with their potential to cause iatrogenic oncogenesis. In this study we describe a new cellular vehicle for this form of therapy,; termed the cord lining epithelial cell (CLEC). CLECs are derived from the human amnion and incorporate many of the immunoregulatory functions associated with the fetal/maternal interface. We show that CLECs can be safely transfected by phage ÏC31 integrase to accomplish site-specific integration of a therapeutic human transgene. We also show that transplanted CLECs are not oncogenic in vivo and can be maintained in immunocompetent mice where acute xeno-rejection rapidly destroys other human cell types. Finally, we demonstrate the utility of CLECs for ex vivo gene therapy by delivering human coagulation factor 8 to mice with Hemophilia A. Experiment Overall Design: The transcriptome datasets of human umbilical cord lining epithelial cells were compared before(CLEC) and 1 month after(CLEC-GFP) phage integrase mediated integration of EGFP cDNA into the genome. Transcriptome datasets were generated in singles and genes differentiallty expressed in cells before and after phage integrase treatment were analysed. Genes differentially expressed by at least 2 fold as compared to untreated CLEC were considered to be significantly dysregulated. List of genes with significant dysregulation were used for further analysis and to used to determine if genomic integration events had resulted in any potential geno-toxicity.
Project description:The two obstacles that impede a wider application of genetically modified cells expressing therapeutic transgenes for ex vivo gene therapy are the immune mediated rejection of the transplanted cells, combined with their potential to cause iatrogenic oncogenesis. In this study we describe a new cellular vehicle for this form of therapy, termed the cord lining epithelial cell (CLEC). CLECs are derived from the human amnion and incorporate many of the immunoregulatory functions associated with the fetal/maternal interface. We show that CLECs can be safely transfected by phage φC31 integrase to accomplish site-specific integration of a therapeutic human transgene. We also show that transplanted CLECs are not oncogenic in vivo and can be maintained in immunocompetent mice where acute xeno-rejection rapidly destroys other human cell types. Finally, we demonstrate the utility of CLECs for ex vivo gene therapy by delivering human coagulation factor 8 to mice with Hemophilia A. High-resolution copy number profiling was performed on genomic DNA of untreated (GSM315546 and GSM315713) and phage integrase modified CLECs (GSM315974 and GSM316895) using the Human Mapping 500K Array Set (Affymetrix) and the data analyzed using GeneChip Chromosome Copy Number Analysis Tool. Regions of copy number gain or loss were defined as having 3 consecutive SNPs concordant for significant copy number abnormalities. Log2 signal intensity ratios >0.3 and <-0.3 were criteria for significant copy number gain and loss, respectively.
Project description:The two obstacles that impede a wider application of genetically modified cells expressing therapeutic transgenes for ex vivo gene therapy are the immune mediated rejection of the transplanted cells, combined with their potential to cause iatrogenic oncogenesis. In this study we describe a new cellular vehicle for this form of therapy, termed the cord lining epithelial cell (CLEC). CLECs are derived from the human amnion and incorporate many of the immunoregulatory functions associated with the fetal/maternal interface. We show that CLECs can be safely transfected by phage φC31 integrase to accomplish site-specific integration of a therapeutic human transgene. We also show that transplanted CLECs are not oncogenic in vivo and can be maintained in immunocompetent mice where acute xeno-rejection rapidly destroys other human cell types. Finally, we demonstrate the utility of CLECs for ex vivo gene therapy by delivering human coagulation factor 8 to mice with Hemophilia A.
Project description:The two obstacles that impede a wider application of genetically modified cells expressing therapeutic transgenes for ex vivo gene therapy are the immune mediated rejection of the transplanted cells, combined with their potential to cause iatrogenic oncogenesis. In this study we describe a new cellular vehicle for this form of therapy, termed the cord lining epithelial cell (CLEC). CLECs are derived from the human amnion and incorporate many of the immunoregulatory functions associated with the fetal/maternal interface. We show that CLECs can be safely transfected by phage φC31 integrase to accomplish site-specific integration of a therapeutic human transgene. We also show that transplanted CLECs are not oncogenic in vivo and can be maintained in immunocompetent mice where acute xeno-rejection rapidly destroys other human cell types. Finally, we demonstrate the utility of CLECs for ex vivo gene therapy by delivering human coagulation factor 8 to mice with Hemophilia A.
Project description:The spinal cord neural stem cell potential is contained within the ependymal cells lining the central canal. This neural stem cell potential is known to decline with age in the mouse. Here, we microdissected and dissociated into single cells the central canal region from the spinal cord of 4 young adult (3-to-4-month old) and 4 aged (18-to-19-month old) C57BL/6J mice to profile the transcriptomes of cells in and around the central canal using 10x Genomics technology.
Project description:Distinct integration patterns of different retroviruses have puzzled virologists for over 20 years. The viral integrase (IN), as part of the intasome complex, docks onto the target DNA (tDNA) and catalyzes the insertion of the viral genome into the host chromatin. We identified retroviral IN amino acids directly contacting tDNA bases and affecting the local integration site sequence biases. These residues also determine the propensity of the virus to integrate into flexible tDNA sequences. Remarkably, natural polymorphisms INS119G and INR231G retarget viral integration away from gene dense regions, without affecting the interaction with the lentiviral tethering cofactor LEDGF/p75 (PSIP1). Precisely these variants were associated with rapid disease progression in a chronic HIV-1 subtype C infection cohort. These findings link integration site selection to virulence and viral evolution but also to the host immune response and antiretroviral therapy, since HIV-1 IN119 is under selection by HLA alleles and integrase inhibitors. LEDGF/p75 (PSIP1) ChIP-Seq using A300-848 antibody (recognizes p75 isoform) and input control in primary CD4+ T-cells
Project description:Retroviral integration is catalyzed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy (EM) reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location (SHL) ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration. Genomic positions of integration sites of WT and mutant PFV vectors in HT1080 cells were determined using ligation-mediated PCR and next generation sequencing. Integration sites of purified recombinant PFV intasome into deproteinized human genomic DNA were used as a reference dataset.
Project description:Retroviral integration is mediated by a unique enzymatic process shared by all retroviruses and retrotransposons. During integration, double-stranded linear viral DNA is inserted into the host genome in a process catalyzed by viral-encoded integrase. However, host cell defenses against HIV-1 integration are not clear. This study identifies -catenin-like protein 1 (CTNNBL1) as a potent inhibitor of HIV-1 integration via association with viral IN and its cofactor, lens epithelium-derived growth factor/p75. CTNNBL1 overexpression blocks HIV-1 integration and inhibits viral replication, whereas CTNNBL1 depletion significantly upregulates HIV-1 integration into the genome of various target cells. Further, CTNNBL1 expression is downregulated in CD4+ T cells by activation, and CTNNBL1 depletion also facilitates HIV-1 integration in resting CD4+ T cells. Thus, host cells may employ CTNNBL1 to inhibit HIV-1 integration into the genome. This finding suggests a strategy for the treatment of HIV infections.
Project description:Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells derived from a person with cystic fibrosis, we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.