Project description:To study the responses of microbial communities to short-term nitrogen addition and warming,here we examine microbial communities in mangrove sediments subjected to a 4-months experimental simulation of eutrophication with 185 g m-2 year-1 nitrogen addition (N), 3oC warming (W) and nitrogen addition*warming interaction (NW).
2022-03-01 | GSE190739 | GEO
Project description:Bacterial diversity in mangrove sediments
| PRJNA779243 | ENA
Project description:Microbial diversity in mangrove sediments
| PRJNA797991 | ENA
Project description:Microbial diversity in Mangrove Sediments
| PRJNA757625 | ENA
Project description:Bacterial composition and diversity of mangrove sediments
Project description:Protein expression in Staphylococcus sp. NIOSBK35 isolated from marine environment (mangrove sediments) to different concentrations of arsenic (III)
Project description:Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation. nirS gene diversity from two salt marsh experiments, GSM (4 treatments, 8 samples, duplicate arrays, four replicate blocks per array, 8 arrays per slide) and PIE (2 treatments, 16 samples, duplicate arrays four replicate blocks per array, 8 arrays per slide)