Project description:Rice black streak dwarf virus (RBSDV) is the causal agent of rice black streak dwarf disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RBSDV infection.
Project description:Rice black streak dwarf virus (RBSDV) is the causal agent of rice black streak dwarf disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RBSDV infection. Comparison between RBSDV and mock infected rice. Biological replicates: 3 control, 3 infected, independently grown and harvested. 1 samples derived from 5 plants grown under same conditons
Project description:In birds and mammals, all mesoderm cells are generated from the primitive streak. Nascent mesoderm cells contain unique dorso-ventral (D/V) identities depending on their relative ingression position along the streak. Molecular mechanisms controlling this initial phase of mesoderm diversification are not well-understood. Using chick model, we generated high-quality transcriptomic datasets of different streak regions and analyzed their molecular heterogeneity.
Project description:Analysis of transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease transcriptome analysis of two varieties of cassava that differ in their level of resistance to cassava brown streak virus.
Project description:During mammalian embryonic development, the primitive streak is initiates the differentiation of pluripotent epiblast cells into germ layers. Pluripotency can be reacquired in committed somatic cells using a combination of handful transcription factors, such as OCT3/4, SOX2, KLF4 and c-MYC (hereafter referred to as OSKM), albeit with low efficiency . Here we show that, during the OSKM-induced reprogramming process toward pluripotency in human cells, intermediate cells transiently show gene expression profiles resembling mesendoderm, which is a major component of the primitive streak. Based on these findings, we discover that forkhead box H1 (FOXH1), a transcription factor required for anterior primitive streak specification during early development, significantly enhances the reprogramming efficiency of human fibroblasts by promoting their maturation, including the mesenchymal to epithelial transition and the activation of late pluripotent markers. These results demonstrate that during the reprogramming process, human somatic cells go through a transient state that resembles mesendoderm. Human differentiated progeny derived from pluripotent stem cells, N=13 Human undifferentiated pluripotent stem cells, N=6 Transgenic ESC line, N=6 Human tissues, N=29 Human tissue-derived cells, N=20 Human nascent reprogrammed cells, N=95 Mouse cells, N=12
Project description:Analysis of transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease