Project description:Insults to the cerebral cortex, such as trauma, ischemia or infections, may result in the development of epilepsy, one of the most common neurological disorders. Previous studies have suggested that perturbations in neurovascular integrity and breakdown of the blood-brain barrier (BBB) lead to neuronal hypersynchronization and epileptiform activity, but the underlying mechanisms are unknown. As with BBB opening, treatment with albumin or with TGF-?1 results in the development of hypersynchronized epileptiform activity. Given the latent period before the appearance of epileptiform activity, we hypothesized the underlying mechanism is a transcriptional response which would be similar for BBB breakdown and exposure to albumin or TGF-?1. In search of a common pathway and transcriptional activation pattern we performed a genome wide analysis. Genomic expression analyses demonstrated similar expression patterns for BBB opening, albumin and TGF-?1 exposure. Most importantly, TGF-? pathway blockers suppressed most albumin-induced transcriptional changes. RNA was extracted from cortical regions of rats treated with sodium deoxycholate (DOC, to induce BBB opening), albumin or TGF-?1 for various durations (7/8, 24, 48hr). Control RNA was extracted from a sham-operated animal and one array was run for each treatment and time point A second set of animals (labeled as Set 2) was treated with either albumin (n=3) or albumin in the presence of TGF-? receptor blockers (n=4; TGF-?R1 kinase activity inhibitor SB431542 and TGF-?R2 antibody) and sacrificed 24 hr following treatment. Sham-operated animals served as controls (n=2).
Project description:Insults to the cerebral cortex, such as trauma, ischemia or infections, may result in the development of epilepsy, one of the most common neurological disorders. Previous studies have suggested that perturbations in neurovascular integrity and breakdown of the blood-brain barrier (BBB) lead to neuronal hypersynchronization and epileptiform activity, but the underlying mechanisms are unknown. As with BBB opening, treatment with albumin or with TGF-β1 results in the development of hypersynchronized epileptiform activity. Given the latent period before the appearance of epileptiform activity, we hypothesized the underlying mechanism is a transcriptional response which would be similar for BBB breakdown and exposure to albumin or TGF-β1. In search of a common pathway and transcriptional activation pattern we performed a genome wide analysis. Genomic expression analyses demonstrated similar expression patterns for BBB opening, albumin and TGF-β1 exposure. Most importantly, TGF-β pathway blockers suppressed most albumin-induced transcriptional changes.
Project description:CD34+ hematopoietic stem/progenitor cells were isolated from human cord blood and amplified in vitro for 10-14 days in serum-free medium with specific cytokines (Ju et al., Eur. J. Cell Biol. 82, 75-86, 2003; Hacker et al., Nat. Immunol. 4, 380-386, 2003). Cells were then treated with TGF-beta1 for various periods of time (2, 4, 16 hours) and RNA was prepared and subjected to microarray analysis. Experiment Overall Design: CD34+ hematopoietic stem/progenitor cells (HPC) were amplified in vitro and treated with TGF-beta1 (10 ng/ml) for 2, 4 and 16 hours. Experiment Overall Design: HPC untreated Experiment Overall Design: HPC + TGF-beta1 for 2 hours Experiment Overall Design: HPC + TGF-beta1 for 4 hours Experiment Overall Design: HPC + TGF-beta1 for 16 hours
Project description:Although it is well known that stroke and head trauma are one of the high risk factors for the development of acquired epilepsy, the cellular mechanisms underlying the epileptogenesis is not well understood. Using rodent models of ischemic stroke and head trauma (partial cortical isolation, undercut), we comparatively analyzed transcription profiles between two different models to explore the commonality. Despite well-known risk factors such as stroke and head trauma, it has not been clinically effective to prevent acquired epilepsy. To do so, it is crucial to understand what commonly drives neural hyperexcitability. Using comparative transcriptome analyses with different models of acquired epilepsy including stroke and head trauma (the present GEO case), as well as blood-brain barrier (BBB) disruption, albumin, and TGFβ application (GEO accession number: GSE12304), we show that TGFβ signaling activation following BBB disruption commonly occurs regardless of brain region and insult types, accompanied by the strong upregulation of genes relevant to inflammation and extracellular matrix (ECM) modulation.
Project description:CD34+ hematopoietic stem/progenitor cells were isolated from human cord blood and amplified in vitro for 10-14 days in serum-free medium with specific cytokines (Ju et al., Eur. J. Cell Biol. 82, 75-86, 2003; Hacker et al., Nat. Immunol. 4, 380-386, 2003). Cultured progenitor cells were induced to differentiate into DC in RPMI medium supplemented with 10% fetal calf serum, 2 mM L-glutamine, 0.1 microM Beta-mercaptoethanol, 100 U/ml penicillin and streptomycin (GIBCO-BRL) and 500 U/ml GM-CSF, 500 U/ml IL-4 for 6 days with or without 10 ng/ml TGF-beta1 as indicated (0.5x10E6 cells/ml). Every 2 days growth factors were added and cells were maintained at 0.5x10E6 cells/ml cell density. RNA was prepared and subjected to microarray analysis. Experiment Overall Design: Dendritic cells (DC) were treated for various periods of time (4, 16 and 36 hours) with TGF-beta1 (10 ng/ml) or left untreated. Experiment Overall Design: DC untreated Experiment Overall Design: DC + TGF-beta1 for 4 hours Experiment Overall Design: DC + TGF-beta1 for 16 hours Experiment Overall Design: DC + TGF-beta1 for 36 hours
Project description:LEV is known to be involved in neuroprotection via anti-angiogenesis and anti-inflammatory activities against blood-brain barrier dysfunction in the acute phase of epileptogenesis after SE, but the mechanism remains unclear. The purpose of this study is to comprehensively examine the gene expression in hippocampus of LEV-treated and untreated pilocarpine induced (PILO-) SE mouse in order to understand the whole process of early epileptogenesis.