Project description:Due to the importance of phosphorus (P) in agriculture, crop inoculation with phosphate solubilizing bacteria (PSB) is a relevant subject of study. Paenibacillus sonchi genomovar Riograndensis SBR5 is a promising candidate for crop inoculation as it can fix nitrogen and excrete ammonium in a remarkably high rate. However, its trait of phosphate solubilization (PS) has not yet been studied in detail. Here, differential gene expression and functional analyses were performed in order to characterize PS in this bacterium. SBR5 was cultivated with two distinct P sources: NaH2PO4 as soluble phosphate source (SPi) and hydroxyapatite as insoluble phosphate source (IPi). Total RNA of SBR5 cultivated in those two conditions was isolated and sequenced and bacterial growth and product formation were monitored. In the IPi medium, the expression of 68 genes was upregulated, while 100 genes were downregulated. Among those, genes involved in carbon metabolism, including those coding for subunits of 2-oxoglutarate dehydrogenase were identified. Quantitation of organic acids showed that the production of tricarboxylic acid cycle-derived organic acids was reduced in IPi condition, while acetate and gluconate were overproduced. Increased concentrations of proline, trehalose, and glycine betaine revealed active osmoprotection during growth in IPi. The cultivation with hydroxyapatite also caused the reduction in the motility of SBR5 cells as a response to Pi depletion in the beginning of its growth. SBR5 was able to solubilize hydroxyapatite, which suggests that this organism is a promising PSB. Our findings are the initial step in the elucidation of the PS process in P. sonchi SBR5 and will be a valuable groundwork for further studies of this organism as a plant growth promoting rhizobacterium.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation. Two-conditions experiment: untreated vs. IND-treated cells. Biological replicates: 6 untreated control, 6 treated samples, independently grown and harvested. One replicate per array.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P minimizing chemical fertilizers dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation. Two-conditions experiment: untreated 1021 vs. untreated RD64 cells. Biological replicates: 6 untreated control strain, 6 untreated IAA-overproducing strain, independently grown and harvested. One replicate per array.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation. Two-conditions experiment: untreated 1021 vs. ICA-treated 1021 cells. Biological replicates: 6 untreated control, 6 treated samples, independently grown and harvested. One replicate per array.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation. Two-conditions experiment: untreated vs. Trp-treated cells. Biological replicates: 6 untreated control, 6 treated samples, independently grown and harvested. One replicate per array.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation. Two-conditions experiment: untreated 1021 vs. IAA-treated 1021 cells. Biological replicates: 6 untreated controls, 6 treated samples, independently grown and harvested. One replicate per array.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation. Two-conditions experiment: untreated 1021 vs. 2,4-D-treated 1021 cells. Biological replicates: 6 untreated controls, 6 treated samples, independently grown and harvested. One replicate per array.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation.