Project description:Grape berries undergo considerable physical and biochemical changes during the ripening process. Ripening is characterized by a number of changes, including the degradation of chlorophyll, an increase in berry deformability, a rapid increase in the level of hexoses in the berry vacuole, an increase in berry volume, the catabolism of organic acids, the development of skin colour, and the formation of compounds that influence flavour, aroma, and therefore, wine quality. The aim of this work is to identify differentially expressed genes during grape ripening by microarray and real-time PCR techniques. Using a custom array of new generation, we analysed the expression of 6000 grape genes from pre-veraison to full maturity, in Vitis vinifera cultivar Muscat of Hamburg, in two different years (2006 and 2007). Five time points per year and two biological replicates per stadium were considered. To reduced intra-plant and inter-plant biological variability, for each ripening stadium we collected around hundred berries from several bunch grapes of five plants of V. vinifera cv Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.Muscat of Hamburg. We will use the real-time PCR technique to validate microarray data.
Project description:We determined the RNA sequence of V. vinifera cv. Victoria and V. vinifera cv. Muscat Hamburg grapes to reveal the transcriptomics variations between summer and winter berries under a double cropping system. Transcriptomics analysis showed that the upregulated VviDXSs, VviPSYs, and VviCCDs expressions might contribute to accumulations of terpenes or norisoprenoids in winter berries.
Project description:Two small RNA libraries were generated from micropropagated ‘Muscat Hamburg’ (Vitis vinifera) plantlets under normal and low temperatures (4 °C). A total of 163 known miRNAs and 299 putative novel miRNAs were detected from two small RNA libraries by Solexa sequencing. Forty-four cold-inducible miRNAs were identified through differentially expressed miRNAs (DEMs) analysis; among which, 13 belonged to upregulated DEMs while 31 belonged downregulated DEMs. This study indicated that a diverse set of miRNAs in V. vinifera are cold-inducible and may play an important role in cold stress response.