Project description:Agilent's whole genome microarray platform was used to profile differentially expressed genes induced upon testosterone treatment of testicular myoid peritubular cells isolated from adult rat testes.
Project description:Androgenic steroids are increasingly used for hormone therapy of postmenopausal women and abused as life style drugs and for doping purposes, though knowledge about associated health risks in females is very limited. In order to understand more about short- and long-term androgen effects on a molecular level, we have analyzed hepatic gene expression in female C57BL/6 mice immediately after subcutaneous treatment with testosterone for 3 weeks and after 12 weeks hormone withdrawal using Affymetrix array technology and quantitative real-time RT-PCR. Among about 14,000 genes examined, 48 were up- and 65 genes were downregulated by testosterone after 3-weeks treatment and about 50% of these changes persisted even 12 weeks after testostrone withdrawal. In addition to obvious risks such as induction of hepatocellular carcinomas and virilization of liver metabolism, testosterone induced a series of changes, as e.g. dysregulation of hepatic gene expression due to incomplete conversion of female to male phenotype â in particular downregulation of cytochrom P450 isoforms and sulfotransferases. As a long-term testosterone effect, transcripts emerged in the liver that are normally specific for the exocine pancreas including amylase 2, ribonuclease 1, and several trypsin-, chymotrypsin-, and elastase-like proteases. This transdifferentiation of hepatic to exocrine pancreatic tissue indicates that testosterone can initiate long-lasting differentiation programs, which â once induced â progress even after androgen withdrawal. This may have far-reaching consequences difficult to foresee implying long-term hazards of testosterone-treatment for female health that have not been taken into account yet. Mice were treated with testosterone or sesame oil (vehicle) for three weeks twice a week. Gene expression in the liver was analyzed either directly after treatment or after three weeks of hormone/vehicle withdrawal. For each of these four groups, three individual mice were used as biological replicates.
Project description:Glucocorticoids are a well recognized and common cause of muscle atrophy. Glucocorticoid-induced atrophy can be prevented by testosterone, but the molecular mechanisms underlying such protection have not been described. Thus, the global effects of testosterone on dexamethasone-induced changes in gene expression were evaluated in rat gastrocnemius muscle using Affymetrix 230_2 DNA microarrays. Gene expression was analyzed after 7 days administration of dexamethasone, dexamethasone plus testosterone, or vehicle. Effects of these agents on weights of gastrocnemius muscles from these animals has been reported (1. Zhao W, Pan J, Zhao Z, Wu Y, Bauman WA, and Cardozo CP. Testosterone protects against dexamethasone-induced muscle atrophy, protein degradation and MAFbx upregulation. J Steroid Biochem Mol Biol 110: 125-129, 2008.) Dexamethasone changed expression of 876 probe sets by at least 2-fold, of which 474 probe sets were changed by at least two fold in the opposite direction in the dexamethasone plus testosterone group (genes in opposition). Major biological themes represented by genes in opposition included IGF-1 signaling, protein synthesis, myogenesis and muscle development, and ubiquitin conjugases and ligases. Testosterone blocked increased expression of DDIT4 and eIF4EBP1, FOXO1 and of the p85 regulatory subunit of the IGF-1 receptor, while preventing decreased expression of IRS-1. Testosterone blocked decreased expression of LXR and suppressed upregulation of C/EBP beta and delta. Testosterone prevented increase expression of Cdkn1A (p21) and decrease expression of cyclins B and D, as well as many other changes that would be expected to reduce cell cycle progression. Testosterone prevented increased expression of muscle development factors Csrp3 and Mbn1 and blocked reduced expression of Wnt4. These data suggest that testosterone blocks multiple changes in gene expression that, collectively, would otherwise downregulate molecular signals that promote protein synthesis and muscle hypertrophy and that stimulate muscle protein catabolism. Keywords: Evaluate drug effects at a single time point
Project description:Androgenic steroids are increasingly used for hormone therapy of postmenopausal women and abused as life style drugs and for doping purposes, though knowledge about associated health risks in females is very limited. In order to understand more about short- and long-term androgen effects on a molecular level, we have analyzed hepatic gene expression in female C57BL/6 mice immediately after subcutaneous treatment with testosterone for 3 weeks and after 12 weeks hormone withdrawal using Affymetrix array technology and quantitative real-time RT-PCR. Among about 14,000 genes examined, 48 were up- and 65 genes were downregulated by testosterone after 3-weeks treatment and about 50% of these changes persisted even 12 weeks after testostrone withdrawal. In addition to obvious risks such as induction of hepatocellular carcinomas and virilization of liver metabolism, testosterone induced a series of changes, as e.g. dysregulation of hepatic gene expression due to incomplete conversion of female to male phenotype – in particular downregulation of cytochrom P450 isoforms and sulfotransferases. As a long-term testosterone effect, transcripts emerged in the liver that are normally specific for the exocine pancreas including amylase 2, ribonuclease 1, and several trypsin-, chymotrypsin-, and elastase-like proteases. This transdifferentiation of hepatic to exocrine pancreatic tissue indicates that testosterone can initiate long-lasting differentiation programs, which – once induced – progress even after androgen withdrawal. This may have far-reaching consequences difficult to foresee implying long-term hazards of testosterone-treatment for female health that have not been taken into account yet.
Project description:The goal of this experiment was to determine if testosterone (T) and estradiol-17 beta (E2) induced gene expression in mouse urogenital sinus mesenchymal (UGM) cells. When UGM grown in culture was treated with T+E2, numerous genes were increased and decreased compared to untreated controls. Quantitative RT-PCR was used to verify results of a subset of genes.
Project description:Human subjects were randomized for treatment with a GnRH-analogue, Goserelin, which suppresses endogenous testosterone or placebo for 12 weeks. Strength training was performed during the last 8 weeks. The suppression of testosterone resulted in an attenuation of the normal muscle adaptation to strength training (increased muscle mass and strength). To identify molecular signals involved in the response to testosterone levels, biopsies were obtained 4 hours after the last training session and gene expression compared with Affymetrix 3' microarrays. This timepoint should capture goserelin effect on both constitutive expression, training induced changes as well as acute exercise induced (4 hours) differences in mRNA levels.
Project description:The goal of this experiment was to determine if testosterone (T) and estradiol-17 beta (E2) induced gene expression in mouse urogenital sinus mesenchymal (UGM) cells. When UGM grown in culture was treated with T+E2, numerous genes were increased and decreased compared to untreated controls. Quantitative RT-PCR was used to verify results of a subset of genes. UGM cells were untreated or treated with T+E2 for 72hrs. One mouse gene expression array was used for each group.
Project description:Human subjects were randomized for treatment with a GnRH-analogue, Goserelin, which suppresses endogenous testosterone or placebo for 12 weeks. Strength training was performed during the last 8 weeks. The suppression of testosterone resulted in an attenuation of the normal muscle adaptation to strength training (increased muscle mass and strength). To identify molecular signals involved in the response to testosterone levels, biopsies were obtained 4 hours after the last training session and gene expression compared with Affymetrix 3' microarrays. This timepoint should capture goserelin effect on both constitutive expression, training induced changes as well as acute exercise induced (4 hours) differences in mRNA levels. Four subject from the placebo group and five subjects from the Goserelin group were compared. Total RNA from vastus lateralis mmuscle biopsies were purified and analyzed on Affymetrix HG-U133 Plus 2.0 arrays.
Project description:Purpose: Obesity and dyslipidemia are associated with increased risk of renal disease.Testosterone deficiency aggravated high-fat diet-induced obesity and hypercholeterolemia. However,whether testosterone deficiency or testosterone deficiency-induced dyslipidemia aggravate the progression of renal disease is not clear. To gain insight into the role of testosterone in modulating renal lipid metabolism, we profiled renal gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Methods: Sexually mature male miniature pigs were either surgical castrated or sham-operated, and castrated with testosterone replacement. We administrated to pigs a high-fat and high-cholesterol (HFC) diet for twelve weeks. RNA-Seq was employed to profile renal gene expression in pigs with different testosterone levels. Conclusions: This study demonstrated that testosterone deficiency aggravated renal lipid accumulation in pigs fed an HFC diet and that these effects could be reversed by testosterone replacement therapy. Impaired metabolic processes, bile acid secretion,estrogen signaling pathway and enhanced triglyceride synthesis may contribute to the increased renal lipid accumulation induced by testosterone deficiency and an HFC diet.