Project description:Low-intensity neuromuscular electrical stimulation (NMES) is often used as an alternative to exercise and high-intensity electrical stimulation to prevent the loss of muscle mass, strength, and endurance in spaceflight and in patients with severe chronic diseases. This study assessed the efficiency of low-intensity (~10% of maximal voluntary contraction) combined (low- and high-frequency) electrical stimulation in preventing the negative effects of weekly disuse (dry immersion without [DI, see a related dataset GSE271607] and with [DI+NMES] daily stimulation; 10 males in each group) on the strength and aerobic performance of the ankle plantar flexors and knee extensors, mitochondrial function in permeabilized muscle fibers, and the proteomic (quantitative mass spectrometry-based analysis) and transcriptomic (RNA-sequencing) profiles of the soleus muscle and vastus lateralis muscle. Application of electrical stimulation during dry immersion prevented a decrease in the maximal strength and a slight reduction in aerobic performance of knee extensors, as well as a decrease in maximal ADP-stimulated mitochondrial respiration and changes in the expression of genes encoding mitochondrial, extracellular matrix, and membrane proteins in the vastus lateralis muscle. In contrast, for the ankle plantar flexors/soleus muscle, electrical stimulation had a positive effect only on maximal mitochondrial respiration, but accelerated the decline in the maximal strength and muscle fiber cross-sectional area, which appears to be associated with the activation of genes regulating the inflammatory response. The data obtained open up broad prospects for the use of low-intensity combined electrical stimulation to prevent the negative effects of disuse for “mixed” muscles, meanwhile, the optimization of the stimulation protocol is required for “slow” muscles.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff2 knock-out mouse model, 48 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff3 knock-out mouse model, 21 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We measured gene expression differences in the extensor digitorum longus (edl) skeletal muscle between wild-type and mice lacking Cu, Zn-superoxide dismutase to determine the effect of chronic oxidative stress on skeletal muscle. We analyzed 4 edl samples from WT mice and 4 samples from the SOD1 knockouts.
Project description:Microgravity exposure as well as chronic muscle disuse are two of the main causes of physiological adaptive skeletal muscle atrophy in humans and murine animals in physiological condition. The aim of this study was to investigate, at both morphological and global gene expression level, skeletal muscle adaptation to microgravity in mouse soleus and extensor digitorum longus (EDL). Adult male mice C57BL/N6 were flown aboard the BION-M1 biosatellite for 30 days on orbit (BF) or housed in a replicate flight habitat on Earth (BG) as reference flight control. In this study, we investigated for the first time gene expression adaptation to 30 days of microgravity exposure in mouse soleus and EDL, highlighting potential new targets for improvement of countermeasures able to ameliorate or even prevent microgravity-induced atrophy in future spaceflights.