Project description:Ruminant livestock are one of the major contributors to carbon emission contributing the global warming issue. Methane (CH4) produced from enteric microbial fermentation of feed in the reticulo-rumen are known to differ between sheep with different digestive function and fermentation products such as metabolites. However, the molecular mechanism underpinning differences in methane emission remains to be fully elucidated. We extracted a membrane and cytosolic protein fraction of rumen epithelium proteins from both high (H) and low (L) CH4 emitting sheep. Protein abundance differences between the phenotypes were quantified using SWATH-mass spectrometry. We identified 92 proteins annotated as cell surface transporters, of which only solute carrier family (SLC) 40A1 had a greater fold change of protein expression in the high methane emission phenotype. The main difference in protein abundance we found were related to the metabolism of glucose, lactate and processes of cell defence against microbes in the epithelium of sheep in each group. To best of our knowledge, this represents one of the most comprehensive proteomes of ovine rumen epithelium to date.
Project description:Multi-omics integration analysis of rumen microorganisms isolated from cows fed either an ad lib or restricted diet, and comparing this with methane emission rates for the cows.
2023-07-20 | PXD040349 | Pride
Project description:Methane emission and its mitigation
| PRJNA641793 | ENA
Project description:Ruminal metagenome_in vivo NFFS methane
Project description:To obtain deeper understanding of atmospheric dynamics of the potent greenhouse gas methane, controlling factors of methanotrophs, as the sole biological methane sink, is necessary. Recent research has revealed complex interactions between methanotrophs and heterotrophs, involving volatile organic compounds (VOCs). In environments with high methane concentrations VOC-mediated interactions significantly influence methane cycling and emissions. Here, we employed a multidisciplinary approach, utilizing proteomics, volatile analysis, and measurements of bacterial growth and methane oxidation to elucidate underlying mechanisms of VOC-mediated interactions between heterotrophs and methanotrophs. The results demonstrate that specific VOCs, like dimethylpolysulfides, released by heterotrophic bacteria can inhibit growth and methane uptake of methanotrophs, while other VOCs had the opposite effect. Proteomics analysis revealed differential protein expression patterns depending on exposure to the volatolome of a heterotrophic bacterium or with CO2 added, which was most pronounced with the particulate and soluble methane monooxygenase. The current study demonstrated potential biotic modulation of methanotrophy without direct contact, caused by VOC or CO2 from respiration, or both, with a proteomic response. Although further research is needed to elucidate the specific mechanisms involved, it is clear that methanotroph-heterotroph interactions need to be investigated closer to informs strategies for mitigating emission of the greenhouse gas methane.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs) on ruminal microbiome and derived metabolism profiling, and ruminal epithelial health and nutritional absorption in ruminants. However, little is known about the roles of SCFAs on hindgut profiles. Here, we firstly combined infusion of three SCFAs, to study their different roles in hindgut microbiome succession and derived metabolism profiling, as well as colonic epithelial transcriptome sequencing patterns using a in vivo goat model. .
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs) on ruminal microbiome and derived metabolism profiling, and ruminal epithelial health and nutritional absorption in ruminants. However, little is known about the roles of SCFAs on hindgut profiles. Here, we firstly combined infusion of three SCFAs, to study their different roles in hindgut microbiome succession and derived metabolism profiling, as well as colonic epithelial transcriptome sequencing patterns using a in vivo goat model.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs), particularly butyrate, in regulating ruminal homeostasis in vivo isolated epithelial cells. However, little is known about other SCFAs like acetate or propionate, and the interaction between rumen microbes and epithelial immunity are rarely reported. Here, we firstly combined infusion of three SCFAs, to study their different roles in ruminal development, antioxidant capacity, barrier functions, and immunity, as well as cross-talk with ruminal microbiome (16S rRNA sequencing data of rumen digesta) and derived transcriptome (RNA-Seq) and metabolism using an in vivo goat model.
Project description:Emerging data has highlighted the importance of short-chain fatty acids (SCFAs), particularly butyrate, in regulating ruminal homeostasis in vivo isolated epithelial cells. However, little is known about other SCFAs like acetate or propionate, and the interaction between rumen microbes and epithelial immunity are rarely reported. Here, we firstly combined infusion of three SCFAs, to study their different roles in ruminal development, antioxidant capacity, barrier functions, and immunity, as well as cross-talk with ruminal microbiome (16S rRNA sequencing data of rumen digesta) and derived transcriptome (RNA-Seq) and metabolism using an in vivo goat model.
Project description:Gut microbiota has profound effects on obesity and associated metabolic disorders. Targeting and shaping the gut microbiota via dietary intervention using probiotics, prebiotics and synbiotics can be effective in obesity management. Despite the well-known association between gut microbiota and obesity, the microbial alternations by synbiotics intervention, especially at the functional level, are still not characterized. In this study, we investigated the effects of synbiotics on high fat diet (HFD)-induced metabolic disorders, and systematically profiled the microbial profile at both the phylogenetic and functional levels. Synbiotics significantly reversed the HFD-induced change of microbial populations at the levels of richness, taxa and OTUs. Potentially important species Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of synbiotics were identified. At the functional level, short chain fatty acid and bile acid profiles revealed that interventions significantly restored cecal levels of acetate, propionate, and butyrate, and synbiotics reduced the elevated total bile acid level. Metaproteomics revealed the effect of synbiotics might be mediated through pathways involved in carbohydrate, amino acid, and energy metabolisms, replication and repair, etc. These results suggested that dietary intervention using our novel synbiotics alleviated HFD-induced weight gain and restored microbial ecosystem homeostasis phylogenetically and functionally.