Project description:p53 is a crucial tumor suppressor in vertebrates that is frequently mutated in human cancers. Most mutations are missense mutations that render p53 inactive in suppressing tumor initiation and progression. Developing small molecule drugs to convert mutant p53 into an active, wild-type-like conformation is a significant focus for personalized cancer therapy. Prior research indicates that reactivating p53 suppresses cancer cell proliferation and tumor growth in animal models. Early clinical evidence with a compound selectively targeting p53 mutants with substitutions of tyrosine 220 suggests potential therapeutic benefits of reactivating p53 in patients. This study identifies and examines the UCI-1001 compound series as a potential corrector for several p53 mutations. The findings indicate that UCI-1001 treatment in p53 mutant cancer cell lines inhibits growth and reinstates wild-type p53 activities, including DNA binding, target gene activation, and induction of cell death. Cellular thermal shift assays, conformation-specific immunofluorescence staining, and differential scanning fluorometry suggest that UCI-1001 interacts with and alters the conformation of mutant p53 in cancer cells. These initial results identify pyrimidine trione derivatives of the UCI-1001 series as candidates for p53 corrector drug development.
Project description:TMPRSS2-ERG fusion is the most common genetic alteration in prostate cancer (PCa) and TP53 is the most frequently mutated gene in human cancers. However, their precise roles in PCa pathogenesis remain elusive. Here we showed that TMPRSS2-ERG fusion co-occurred with TP53 deletion/mutation in PCa patient specimens. ERG overexpression and Trp53 knockout/R172H mutant knockin induced pyrimidine synthesis gene (PSG) expression and prostate tumorigenesis in mice. Gain-of-function p53 mutants bound to the CTNNB1 promoter and upregulated β-Catenin. Overexpressed ERG and β-Catenin co-occupied PSG loci and mediated PSG expression, and high PSG expression associated with increased β-Catenin level and poor overall survival of PCa patients. β-Catenin inhibition by proteolysis-targeting chimeras (PROTACs) of its co-activator CBP and partner proteins LEF1/TCFs blocked ERG/p53-mutant PCa growth. Our study identifies CTNNB1 as a transcriptional target of p53 GOF-mutants, and reveals a druggable dependency on β-Catenin and pyrimidine synthesis in p53-mutated cancers with or without TMPRSS2-ERG fusion.
Project description:TMPRSS2-ERG fusion is the most common genetic alteration in prostate cancer (PCa) and TP53 is the most frequently mutated gene in human cancers. However, their precise roles in PCa pathogenesis remain elusive. Here we showed that TMPRSS2-ERG fusion co-occurred with TP53 deletion/mutation in PCa patient specimens. ERG overexpression and Trp53 knockout/R172H mutant knockin induced pyrimidine synthesis gene (PSG) expression and prostate tumorigenesis in mice. Gain-of-function p53 mutants bound to the CTNNB1 promoter and upregulated β-Catenin. Overexpressed ERG and β-Catenin co-occupied PSG loci and mediated PSG expression, and high PSG expression associated with increased β-Catenin level and poor overall survival of PCa patients. β-Catenin inhibition by proteolysis-targeting chimeras (PROTACs) of its co-activator CBP and partner proteins LEF1/TCFs blocked ERG/p53-mutant PCa growth. Our study identifies CTNNB1 as a transcriptional target of p53 GOF-mutants, and reveals a druggable dependency on β-Catenin and pyrimidine synthesis in p53-mutated cancers with or without TMPRSS2-ERG fusion.
Project description:TMPRSS2-ERG fusion is the most common genetic alteration in prostate cancer (PCa) and TP53 is the most frequently mutated gene in human cancers. However, their precise roles in PCa pathogenesis remain elusive. Here we showed that TMPRSS2-ERG fusion co-occurred with TP53 deletion/mutation in PCa patient specimens. ERG overexpression and Trp53 knockout/R172H mutant knockin induced pyrimidine synthesis gene (PSG) expression and prostate tumorigenesis in mice. Gain-of-function p53 mutants bound to the CTNNB1 promoter and upregulated β-Catenin. Overexpressed ERG and β-Catenin co-occupied PSG loci and mediated PSG expression, and high PSG expression associated with increased β-Catenin level and poor overall survival of PCa patients. β-Catenin inhibition by proteolysis-targeting chimeras (PROTACs) of its co-activator CBP and partner proteins LEF1/TCFs blocked ERG/p53-mutant PCa growth. Our study identifies CTNNB1 as a transcriptional target of p53 GOF-mutants, and reveals a druggable dependency on β-Catenin and pyrimidine synthesis in p53-mutated cancers with or without TMPRSS2-ERG fusion.
Project description:Mis-sense mutations affecting TP53 promote carcinogenesis both by inactivating its tumor suppressive functions, and by conferring aberrant pro-carcinogenic activities. We report here that mis-sense mutants in the p53 DNA-binding domain (DBD) and the transactivation domain (TAD) unexpectedly activate pro-carcinogenic epidermal growth factor receptor (EGFR) signaling via distinct, previously unrecognized molecular mechanisms. DBD- and TAD-specific TP53 mutants exhibited different cellular localization patterns and induced distinct gene expression profiles. Combining mass spectrometry with drug compound screens, we identified EGFR as a major signaling factor that is stabilized by TAD and DBD mutants in the cytosolic and nuclear compartments respectively, in a tissue-independent manner. Mechanistically, TAD mutants promote EGFR-mediated signaling by enhancing EGFR interaction with AKT via DDX31 in the cytosol. Conversely, DBD mutants maintain EGFR activity in the nucleus, by blocking EGFR interaction with the phosphatase SHP1, triggering upregulation of c-Myc and Cyclin D1 levels. Therapeutically, the sensitivity of DBD mutants to EGFR inhibition is enhanced by increasing the affinity of EGFR for SHP1, while that of TAD mutants can be induced by concurrent inhibition of AKT, mTOR or PI3K signaling. Thus, our findings suggest that gain-of-function, mis-sense mutations affecting two different p53 domains promote carcinogenesis by enhancing EGFR signaling via distinctive mechanisms. Our findings imply that cancer cells bearing domain-specific mutations may have distinct and exploitable therapeutic vulnerabilities.
Project description:To globally evaluate to what extend type-1 p53 mutant transcription activity can be restored by arsenic trioxide (ATO) (compared to wild-type p53), p53-null U937 cells introduced with 10 frequent type-1 p53, type-3 p53-R273H (negative control), empty vector or wild-type p53 were treated with or without 1 μg/mL ATO. mRNA was isolated and then subject to deep sequencing, using Illumina HiSeq. The sequence reads that passed quality filters were analyzed using Cutadapt. Results and conclusions: The type-1 p53 mutants are the major cellular targets of ATO in the current cell contexts. The expression profiles of well-established p53 targets in cells expressing wild-type p53 highly correlated with the ones in cells expressing ATO-rescued type-1 mutants, but not those in cells expressing ATO-treated R273H. In cells harboring type-1 mutants, the median expression levels of these targets were elevated by ATO to extents comparable to wild-type p53.