Project description:The brown anole lizard, Anolis sagrei, is an emerging squamate model for developmental and functional genetic studies. To develop additional tools and resources for mechanistic studies of signaling pathways and cellular processes in A. sagrei, we established an in vitro system. Using this approach, we studied Hedgehog (Hh) signaling, one of the key developmental signaling pathways, which has evolved across the metazoa. We investigated Hh pathway-induced transcriptional changes in two evolutionarily distinct tetrapods: A. sagrei, and M. musculus, to identify the species-specific and evolutionarily shared responses. We report that ~45 % of genes induced as a response to Hh pathway activation in A. sagrei, are shared with M. musculus. To further increase the versatility of A. sagrei as a squamate model system for gene editing and genomic studies, we established and characterized a new immortalized A. sagrei embryonic fibroblast cell line ASEC-1. We performed whole-genome sequencing analysis to annotate the set of polymorphisms within this cell line. We conclude that transcriptome characterization of the ASEC-1 cell line would permit further investigations dissecting the complex biological and evolutionary aspects of Hh signaling.
Project description:This project aims to establish the embryonic anole lung as a model for investigating lung development and more general epithelial morphogenesis by generating a set of single-cell RNA-seq (scRNA-seq) data from late-stage embryonic lungs taken from brown anoles (Anolis sagrei). The anole lung, with its simple architecture, provides a novel tool for investigating signaling in a less complex respiratory system than the murine lung, and this data set would be a large advance in making this system more widely known and accesible among developmental biologists.
Project description:Sex differences in lifespan are widespread across animal taxa, but their causes remain unresolved. Alterations to the epigenome are hypothesized to contribute to vertebrate aging, and DNA methylation-based aging clocks allow for quantitative estimation of biological aging trajectories. Here, we investigate the influence of age, sex, and their interaction on genome-wide DNA methylation patterns in the brown anole (Anolis sagrei), a lizard with pronounced female-biased survival and longevity. We develop a series of age predictor models and find that, contrary to our predictions, rates of epigenetic aging were not slower in female lizards. However, methylation states at loci acquiring age-associated changes appear to be more “youthful” in young females, suggesting that female DNA methylomes are preemptively fortified in early life in opposition to the direction of age-related drift. Collectively, our findings provide insights into epigenetic aging in reptiles and suggest that early-life epigenetic profiles may be more informative than rates of change over time for predicting sex biases in longevity.
Project description:Anolis carolinensis embryos were collected 0-1 days post egg laying, and total RNA was extracted for RNA-Seq analysis (Illumina Hi-Seq2000). Transcriptome sequence from these stages in the green anole, equivalent to mouse 9.5-10.5 dpc embryos, will help to improve gene annotations in A. carolinensis and provide expression level information for key organogenesis and patterning processes. Anolis carolinensis embryos were collected 0-1 days post egg laying for RNA-Seq analysis. The two embryos collected were at 28 somite-pair (28S) and 38 somite-pair (38S), equivalent to mouse 9.5 dpc and 10.5 dpc embryos, respectively. Total RNA was extracted using the total RNA component of the mirVana (Ambion) kit, RNA-Seq library prep was carried out using the NuGEN Ovation RNA-Seq kit, and sequencing was carried out on an Illumina HiSeq 2000, following the manufacturer's protocol. The untrimmed data was then aligned to the Anolis carolinensis reference genome (Anocar2.0) using tophat. Published: Eckalbar WL, Lasku E, Infante CR, Elsey RM, Markov GJ, Allen AN, Corneveaux JJ, Losos JB, DeNardo DF, Huentelman MJ, Wilson-Rawls J, Rawls A, Kusumi K. Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol. DOI: 10.1016/j.ydbio.2011.11.021
Project description:Comparative RNA-seq profiling of mouse and anole lizard developing limbs and external genitalia, to assess evolutionary and develomental relationships, between the two tissue types based on transcriptomic data RNA-seq profiling of embryonic limb and external genitalia tissue at different stages of development, in mouse and anole lizard, in duplicates, using Illumina HiSeq