Project description:Purpose: To evalute the antagonistic effects of White Button Mushroom/WBM extract on AR signaling in human prostate cance cells. Methods: LNCaP cells were treated with 1 nM DHT, with or without WBM extract (3 μL/mL), for 48h, in triplicates, and total RNA was isolated and sequenced. Results: We identified 155 up-regulated genes (Fold-change ≥ 2, p<0.05) versus 185 down-regulated genes (Fold-change ≤ 0.5, p<0.05). Conclusion: White Button Mushroom suppressed androgen respsonive genens and cell cycle division genes Collectively, these results suggest that WBM extract affects prostate cancer by interrupting AR-dependent cell cycle division and DNA replication.
Project description:Agaricus bisporus is a soil-inhabiting fungus which is cultivated for production of white button mushrooms. A disease of A. bisporus has been previously described with a range of disease symptoms (yield loss, pinning delay, cap distortions and cap browning) which has been given collective name of “Mushroom Virus X” (MVX). The causes of this disease are not clear however prior to this research an association was found between the disease and double-stranded RNA molecules in the mushroom fruitbodies. The experiment was designed to examine causes and host responses of the disease causing the Brown Cap symptom in the cultivated mushroom A. bisporus. This microarray experiment was performed before the Agaricus bisporus genome was sequenced. The gene sequences used to design probes were from known and novel A. bisporus sequences and sequences of transcript fragments identified by Suppression Subtractive Hybridization of non-symptomatic and virus-diseased A. bisporus mushroom fruitbodies. The A. bisporus mushroom fruitbodies were grown on composted wheat straw using commercial cultivation procedures. The gene expression comparison was made of RNA isolated from 32 mushroom fruitbodies (Agaricus bisporus) samples: 20 samples from 5 separate virus-infected commercial mushroom farms with crops displaying the brown symptom (4 replicate samples per farm) and 12 samples from a non-infected crop grown at the University of Warwick. The precise composition of the viral load was the subject of this and future research/papers. Abstract of Manuscript submitted to Applied and Environmental Microbiology: Characterizing the viral agents causing brown cap mushroom disease of Agaricus bisporus by Daniel Eastwood, Julian Green, Helen Grogan, and Kerry Burton (Paper #AEM01093-15). The symptoms of viral infections of fungi range from cryptic to severe but there is little knowledge of the factors involved in this transition of fungal/viral interactions. Brown Cap Mushroom Disease of the cultivated Agaricus bisporus is economically important and represents a model system to describe this transition. Differentially expressed transcript fragments between mushrooms showing the symptoms of Brown Cap Mushroom Disease and control white non-infected mushrooms have been identified and sequenced. Ten of these RNA fragments have been found to be up-regulated over a thousand-fold between diseased and non-diseased tissue but are absent from the Agaricus bisporus genome sequence and hybridise to double-stranded RNA’s extracted from diseased tissue. We hypothesize these transcript fragments are viral and represent components of the disease-causing agent, a bipartite virus with similarities to the family Partitiviridae. The virus fragments were found at two distinct levels within infected mushrooms, at raised levels in infected, non-symptomatic, white coloured mushrooms and much greater levels (3,500-87,000 times greater) in infected mushrooms exhibiting brown colouration. In addition, differential screening revealed 9 up-regulated and 32 down-regulated host Agaricus bisporus transcripts. Chromametric analysis was able to distinguish colour differences between non-infected white mushrooms and white infected mushrooms at an early stage of mushroom growth. This method may be the basis for an ‘on-farm’ disease detection assay. A gene expression comparison was made between diseased mushroom displaying the brown cap symptom with characteristic double-strand RNA profiles (banding pattern on gels) and non-symptomatic virus-free mushrooms. In total RNA was isolated from 32 mushroom fruitbody (Agaricus bisporus) samples: 20 samples from 5 separate virus-infected commercial mushroom farms with crops displaying the brown symptom (4 replicate samples per farm) and 12 samples from a non-infected crop grown at the University of Warwick. Commercially-grown mushrooms are produced in “flushes” at approximately weekly intervals. The samples were collected from commercial farms when symptoms were reported to us but these were from different flushes: Farm1 from the 2nd flush; Farm 2 from the 1st flush; Farm 3 from the 3rd flush; Farm 4 from the 1st flush; and Farm 9 from the 1st flush. To allow for comparisons on the basis of Flush Number, the non-infected mushrooms grown at the University of Warwick were sampled from the first, second and third flushes, 4 mushrooms sampled from each flush.
Project description:To study the mechanism of protective effect by White Button Mushroom (WBM) for Nonalcoholic Fatty Liver Disease (NAFLD) in ovariectomized mice (model for postmenopausal women).
Project description:The white button mushroom Agaricus bisporus is the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. Growth profiling suggested different abilities for several A. bisporus strains to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.
Project description:Lecanicillium fungicola, the causative agent of dry bubble disease on Agaricus bisporus results in significant crop losses for mushroom growers worldwide. Dry bubble disease is treated through strict hygiene control methods and the application of chemical fungicides but an increase in fungicide resistant L. fungicola strains has resulted in a need to develop alternative biocontrol treatment methods. The aim of the work presented here was to evaluate the response of L. fungicola to a Bacillus velezensis isolate to assess its potential as a novel biocontrol agent. The bacterial species in Serenade, a commercially available biocontrol treatment was also included in this analysis. Exposure of 48 hr L. fungicola cultures to 25% v/v 96h B. velezensis culture filtrate resulted in a 45% reduction in biomass (P < 0.0002) and a disruption in hyphal structure and morphology. Characterisation of the proteomic response of L. fungicola following exposure to B. velezensis culture filtrate revealed an increase in the abundance of a variety of proteins associated with stress response (Norsolorinic acid reductase (+8 fold), isocitrate lyase (+7 fold) and MMS19 nucleotide excision repair protein (+4 fold). There was also a decrease in the abundance of proteins associated with transcription (40S ribosomal protein S30 (-33 fold), 60S ribosomal protein L5 (-45 foldThe results presented here indicate that B. velezensis culture filtrate is capable of inhibiting the growth of L. fungicola and inducing a stress response, thus indicating its potential to control this important pathogen of mushrooms.
Project description:Cladobotryum mycophilum, the causative agent of cobweb disease on Agaricus bisporus results in significant crop losses for mushroom growers worldwide. Cobweb disease is treated through strict hygiene control methods and the application of chemical fungicides but an increase in fungicide resistant Cladobotryum strains has resulted in a need to develop alternative biocontrol treatment methods. The aim of the work presented here was to evaluate the response of C. mycophilum to a Bacillus velezensis isolate to assess its potential as a novel biocontrol agent. Exposure of 48 hr C. mycophilum cultures to 25% v/v 96h B. velezensis culture filtrate resulted in a 57% reduction in biomass (P < 0.0002), a disruption in hyphal structure and morphology, and the appearance of aurofusarin in culture medium. Proteomic analysis of B. velezensis culture filtrate revealed the presence of peptidase 8 (subtilisin), peptide deformylase and probable cytosol aminopeptidase which are known to induce cell disruption. Characterisation of the proteomic response of C. mycophilum following exposure to B. velezensis culture filtrate revealed an increase in the abundance of a variety of proteins associated with stress response (ISWI chromatin-remodelling complex ATPase ISW2 (+24 fold), carboxypeptidase Y precursor (+3 fold) and calmodulin (+2 fold). There was also a decrease in the abundance of proteins associated with transcription (40S ribosomal protein S30 (-26 fold), 40S ribosomal protein S21 (-3 fold) and carbohydrate metabolism, (L-xylulose reductase (-10 fold). The results presented here indicate that B. velezensis culture filtrate is capable of inhibiting the growth of C. mycophilum and inducing a stress response, thus indicating its potential to control this important pathogen of mushrooms.
Project description:To study the mechanism of protective effect by White Button Mushroom (WBM) for Nonalcoholic Fatty Liver Disease (NAFLD) in ovariectomized mice (model for postmenopausal women). The ovariectomized mice were fed WBM diet for 3 month, sacrificed to harvest liver. 4 mice for control diet and 4 mice for WBM diet.
Project description:Agaricus bisporus is a soil-inhabiting fungus which is cultivated for production of white button mushrooms. A disease of A. bisporus has been previously described with a range of disease symptoms (yield loss, pinning delay, cap distortions and cap browning) which has been given collective name of “Mushroom Virus X” (MVX). The causes of this disease are not clear however prior to this research an association was found between the disease and double-stranded RNA molecules in the mushroom fruitbodies. The experiment was designed to examine causes and host responses of the disease causing the Brown Cap symptom in the cultivated mushroom A. bisporus. This microarray experiment was performed before the Agaricus bisporus genome was sequenced. The gene sequences used to design probes were from known and novel A. bisporus sequences and sequences of transcript fragments identified by Suppression Subtractive Hybridization of non-symptomatic and virus-diseased A. bisporus mushroom fruitbodies. The A. bisporus mushroom fruitbodies were grown on composted wheat straw using commercial cultivation procedures. The gene expression comparison was made of RNA isolated from 32 mushroom fruitbodies (Agaricus bisporus) samples: 20 samples from 5 separate virus-infected commercial mushroom farms with crops displaying the brown symptom (4 replicate samples per farm) and 12 samples from a non-infected crop grown at the University of Warwick. The precise composition of the viral load was the subject of this and future research/papers. Abstract of Manuscript submitted to Applied and Environmental Microbiology: Characterizing the viral agents causing brown cap mushroom disease of Agaricus bisporus by Daniel Eastwood, Julian Green, Helen Grogan, and Kerry Burton (Paper #AEM01093-15). The symptoms of viral infections of fungi range from cryptic to severe but there is little knowledge of the factors involved in this transition of fungal/viral interactions. Brown Cap Mushroom Disease of the cultivated Agaricus bisporus is economically important and represents a model system to describe this transition. Differentially expressed transcript fragments between mushrooms showing the symptoms of Brown Cap Mushroom Disease and control white non-infected mushrooms have been identified and sequenced. Ten of these RNA fragments have been found to be up-regulated over a thousand-fold between diseased and non-diseased tissue but are absent from the Agaricus bisporus genome sequence and hybridise to double-stranded RNA’s extracted from diseased tissue. We hypothesize these transcript fragments are viral and represent components of the disease-causing agent, a bipartite virus with similarities to the family Partitiviridae. The virus fragments were found at two distinct levels within infected mushrooms, at raised levels in infected, non-symptomatic, white coloured mushrooms and much greater levels (3,500-87,000 times greater) in infected mushrooms exhibiting brown colouration. In addition, differential screening revealed 9 up-regulated and 32 down-regulated host Agaricus bisporus transcripts. Chromametric analysis was able to distinguish colour differences between non-infected white mushrooms and white infected mushrooms at an early stage of mushroom growth. This method may be the basis for an ‘on-farm’ disease detection assay.