Project description:The rumen harbors a complex mixture of archaea, bacteria, protozoa and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacteria populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen fauna. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to the initial stages of rumination, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated in nylon bags within the rumen of cannulated dairy cows for 48 hours.
2020-10-14 | PXD017007 | Pride
Project description:Rumen microorganisms archaea and bacteria
Project description:<p>From an animal production and health perspective, our understanding of the metabolites in ruminant biofluids, particularly rumen fluid across different host species is poorly understood. Metabolomics is a powerful and sensitive approach for investigating low molecular weight metabolite profiles present in rumen biofluids. It can be used to identify potential roles of metabolites in the rumen microbiome and provide and understanding of host-level regulatory mechanisms associated with animal production. The rumen is a strictly anaerobic environment enriched with a complex community of bacteria, protozoa, fungi, archaea and bacteriophages. Here, we present a metabolomic dataset generated using hydrophilic interaction liquid chromatography (HILIC) and semi-polar (C18) chromatography methods coupled to high resolution mass spectrometry (MS), collected in both positive and negative ionization modes, of ovine rumen samples that were fractionated based on molecular weight (20 kDa, 8-10 kDa and 100 Da). This study highlights the potential of HILIC and C18 chromatography combined with non-targeted mass spectrometric methods to detect the polar and semi-polar metabolite species of the ruminal fluid metabolome.</p>
Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.
2023-06-12 | GSE233696 | GEO
Project description:Raw date of rumen fluid archaea
| PRJNA1141186 | ENA
Project description:Rumen archaea and bacteria of yak
Project description:RNA sequencing (RNA-Seq) was performed on rumen papillae from 16 steers with variation in gain and feed intake. Sixteen rumen papillae samples were sequenced by Cofactor Genomics (St.Louis, MO).