Project description:Cutaneous T-cell lymphomas (CTCL) are a group of rare hematological malignancies characterized by infiltration of malignant T-cells into the skin. Two main types of CTCL constitute of Mycosis Fungoides (MF), a more indolent form of the disease, and Sézary Syndrome (SS), the aggressive and leukemic variant with blood involvement. Sézary syndrome presents a significant clinical challenge due to its very aggressive nature, poor prognosis, and treatment resistance, and to date, the disease is known to be uncurable. Histone deacetylase inhibitors have gained attention in CTCL treatment with promising results, but they expose limited specificity and strong side effects. Recent genomic studies underscore the role of epigenetic modifiers in CTCL pathogenesis, prompting an investigation into HDAC10, a member of Class IIb HDACs, in SS. HDAC10 was investigated in different cancers, revealing its involvement in the cell cycle regulation, apoptosis, and autophagy, but its role in CTCL is unknown. In this study we aimed to determine the role of HDAC10 in Sezary Syndrome, focusing on its cellular localization, role in cell growth, and potential therapeutic target. We indicated that HDAC10 is overexpressed in SS patients and located mainly in the cytoplasm. Its overexpression leads to an inhibitory effect on apoptosis progression when exposed to the pro-apoptotic compound Camptothecin (CPT). Knockdown of HDAC10 resulted in reduced cell growth and induction of apoptosis and autophagy, highlighting its potential importance in CTCL pathogenesis. Whole transcriptome analysis indicated that HDAC10 is associated with crucial cancer-related pathways for example hematopoietic cell lineage, PI3K-Akt signaling pathway, pathways in cancer, Ras signaling pathway, MAPK signaling pathway or JAK-STAT signaling pathway, which are critical for the survival and proliferation of malignant T cells. Inhibition of HDAC10 with selective HDAC10i increased the sensitivity of Sézary cells to the pro-apoptotic compound camptothecin (CPT). Our findings demonstrate that HDAC10 plays a key role in the molecular background of Sézary syndrome, highlighting its importance in the cellular mechanisms of the disease
Project description:This study used tumour and paired normal samples from 28 Sézary Syndrome (SS) patients to define recurrent regions of chromosomal aberrations. Our data identified recurrent losses of 17p13.2-p11.2 and 10p12.1-q26.3 occurring in 71 and 68% of cases respectively; common gains were detected for 17p11.2-q25.3 (64%) and chromosome 8/8q (50%). Moreover, we identified novel genomic lesions recurring in more than 30% of tumours: loss of 9q13-q21.33 and gain of 10p15.3-10p12.2. In the Sézary Syndrome cases analysed, we could find several small and few large Uniparental Disomies involving interstitial or telomeric regions of LOH occurring mainly for chromosome 10 and to a lesser extent for chromosome 9 and 17. In the attempt to correlate Copy Number data and clinical parameters we find a relationship between complex pattern of chromosomal aberrations, involving at least three recurrent Copy Number alterations, and shorter survival. Integrating mapping and transcriptional data we were able to identify a total of 113 deregulated transcripts in aberrant chromosomal regions that included cancer related genes such as members of the NF-kB pathway (BAG4, BTRC, NKIRAS2, PSMD3, TRAF2) that might explain its constitutive activation in CTCL. Matching this list of genes with those discriminating patients with different survival times we identify several common candidates that might exert critical roles in Sézary Syndrome, like BUB3 and PIP5K1B.
Project description:This study used tumour and paired normal samples from 28 Sézary Syndrome (SS) patients to define recurrent regions of chromosomal aberrations. Our data identified recurrent losses of 17p13.2-p11.2 and 10p12.1-q26.3 occurring in 71 and 68% of cases respectively; common gains were detected for 17p11.2-q25.3 (64%) and chromosome 8/8q (50%). Moreover, we identified novel genomic lesions recurring in more than 30% of tumours: loss of 9q13-q21.33 and gain of 10p15.3-10p12.2. In the Sézary Syndrome cases analysed, we could find several small and few large Uniparental Disomies involving interstitial or telomeric regions of LOH occurring mainly for chromosome 10 and to a lesser extent for chromosome 9 and 17. In the attempt to correlate Copy Number data and clinical parameters we find a relationship between complex pattern of chromosomal aberrations, involving at least three recurrent Copy Number alterations, and shorter survival. Integrating mapping and transcriptional data we were able to identify a total of 113 deregulated transcripts in aberrant chromosomal regions that included cancer related genes such as members of the NF-kB pathway (BAG4, BTRC, NKIRAS2, PSMD3, TRAF2) that might explain its constitutive activation in CTCL. Matching this list of genes with those discriminating patients with different survival times we identify several common candidates that might exert critical roles in Sézary Syndrome, like BUB3 and PIP5K1B.
Project description:This study was designed to identify highly recurrent genetic alterations typical of Sézary syndrome (Sz), an aggressive cutaneous T-cell lymphoma/leukemia, possibly revealing pathogenetic mechanisms and novel therapeutic targets. High-resolution array-based comparative genomic hybridization was done on malignant T cells from 20 patients. Expression levels of selected biologically relevant genes residing within loci with frequent copy number alteration were measured using quantitative PCR. Combined binary ratio labeling-fluorescence in situ hybridization karyotyping was done on malignant cells from five patients. Minimal common regions with copy number alteration occurring in at least 35% of patients harbored 15 bona fide oncogenes and 3 tumor suppressor genes. Based on the function of the identified oncogenes and tumor suppressor genes, at least three molecular mechanisms are relevant in the pathogenesis of Sz. First, gain of cMYC and loss of cMYC antagonists (MXI1 and MNT) were observed in 75% and 40% to 55% of patients, respectively, which were frequently associated with deregulated gene expression. The presence of cMYC/MAX protein heterodimers in Sézary cells was confirmed using a proximity ligation assay. Second, a region containing TP53 and genome maintenance genes (RPA1/HIC1) was lost in the majority of patients. Third, the interleukin 2 (IL-2) pathway was affected by gain of STAT3/STAT5 and IL-2 (receptor) genes in 75% and 30%, respectively, and loss of TCF8 and DUSP5 in at least 45% of patients. In sum, the Sz genome is characterized by gross chromosomal instability with highly recurrent gains and losses. Prominent among deregulated genes are those encoding cMYC, cMYC-regulating proteins, mediators of MYC-induced apoptosis, and IL-2 signaling pathway components. [Cancer Res 2008;68(8):2689–98] Keywords: aCGH, COBRA, FISH, PLA
Project description:The transcription factor E2A is essential for lymphocyte development. In this study, we describe a recurrent E2A gene deletion in at least 70% of patients with Sézary syndrome (SS), a subtype of T cell lymphoma. Loss of E2A results in enhanced proliferation and cell cycle progression via derepression of the proto-oncogene MYC and the cell cycle regulator CDK6. Furthermore, by examining the gene expression profile of SS cells following restoration of E2A expression, we identify a number of E2A-regulated genes that interfere with oncogenic signaling pathways including the Ras pathway. Several of these genes are down-regulated or lost in primary SS tumor cells. These data demonstrate a tumor suppressor function of E2A in human lymphoid cells and could help to develop new treatment strategies for human lymphomas with altered E2A activity.
Project description:MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T-cells cells from 21 patients diagnosed with Sézary syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4+) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4+ T-cell controls and B-cell lymphomas. The majority (104/114) of SzS-associated microRNAs (P < 0.05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < 0.0001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in >90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells. CD4+ cells were purified from peripheral blood of 21 Sz patients and compared with 6 healthy controls.
Project description:MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T-cells cells from 21 patients diagnosed with Sézary syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4+) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4+ T-cell controls and B-cell lymphomas. The majority (104/114) of SzS-associated microRNAs (P < 0.05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < 0.0001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in >90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells.