Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy
Project description:The Periconia genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia is widespread in many habitats but little is known about its ecology. Several species produce bioactive molecules, among them, Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. The strain CNCM I-4278, here identified as P. digitata was able to inhibit the plant pathogen Phytophthora parasitica. Since P. digitata has great potential as biocontrol agent and the only other genome available in the Periconiaceae family is that of Periconia macrospinosa, which is quite fragmentary, we generated long-read genomic data for P. digitata. Thanks to the PacBio Hifi sequencing technology, we obtained a high-quality genome with a total length of 38,967,494 bp, represented by 13 haploid chromosomes. The transcriptomic and proteomic data strengthen and support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will also contribute in our understanding of the Eukaryotic tree of life. Not least, opens new possibilities to the biotechnological use of the species.
Project description:The Periconia genus belongs to the phylum Ascomycota, order Pleosporales, family Periconiaceae. Periconia is widespread in many habitats but little is known about its ecology. Several species produce bioactive molecules, among them, Periconia digitata extracts were shown to be deadly active against the pine wilt nematode. The strain CNCM I-4278, here identified as P. digitata was able to inhibit the plant pathogen Phytophthora parasitica. Since P. digitata has great potential as biocontrol agent and the only other genome available in the Periconiaceae family is that of Periconia macrospinosa, which is quite fragmentary, we generated long-read genomic data for P. digitata. Thanks to the PacBio Hifi sequencing technology, we obtained a high-quality genome with a total length of 38,967,494 bp, represented by 13 haploid chromosomes. The transcriptomic and proteomic data strengthen and support the genome annotation. Besides representing a new reference genome within the Periconiaceae, this work will also contribute in our understanding of the Eukaryotic tree of life. Not least, opens new possibilities to the biotechnological use of the species.
2023-08-04 | PXD038175 | Pride
Project description:HiFi Long read sequencing of Diuraphis noxia
Project description:Short-read WGS datasets of 15 eHHV-6B-positive Japanese subjects (Illumina WGS) and long-read WGS datasets of 3 eHHV-6B-positive Japanese subjects with SLE (PacBio 30x HiFi long-read sequencing).
Project description:Short-read WGS datasets of 15 eHHV-6B-positive Japanese subjects (Illumina WGS) and long-read WGS datasets of 3 eHHV-6B-positive Japanese subjects with SLE (PacBio 30x HiFi long-read sequencing).
Project description:Adenovirus is a common human pathogen that relies on host cell processes for transcription and processing of viral RNA and protein production. Although adenoviral promoters, splice junctions, and cleavage and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome. By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and cleavage and polyadenylation sites across the adenovirus genome. In addition to confirming the known canonical viral early and late RNA cassettes, our analysis of splice junctions within long RNA reads revealed an additional 35 novel viral transcripts. These RNAs include fourteen new splice junctions which lead to expression of canonical open reading frames (ORF), six novel ORF-containing transcripts, and fifteen transcripts encoding for messages that potentially alter protein functions through truncations or fusion of canonical ORFs. In addition, we also detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking separate gene transcription units. Of these, an evolutionary conserved protein was detected containing the N-terminus of E4orf6 fused to the downstream DBP/E2A ORF. Loss of this novel protein, E4orf6/DBP, was associated with aberrant viral replication center morphology and poor viral spread. Our work highlights how long-read sequencing technologies can reveal further complexity within viral transcriptomes.
Project description:This dataset contains CLCNKA/CLCNKB locus alignment data from 27 patients with Bartter syndrome and structural variants encompassing the CLCNKB gene. Due to data protection regulations and in accordance with the patient consent, only relevant alignments from the following regions are shared:
hg19: chr1:16,300,000-16,400,000
hg38 (linked read dataset only): chr1:16,000,000-16,100,000
Methods to generate libaries were: long-range amplicon PCR (24 samples), targeted long-fragment enrichment (Samplix/Xdrop technology, 4 samples), long-read whole genome (PacBio Sequel II HiFi reads, 3 samples), 10X linked read short read whole genome (1 sample).
Project description:Genome editing was conducted on a t(3;8) K562 model to investigate the effects of deleting different modules or CTCF binding sites within the MYC super-enhancer. To check mutations after targeting with CRISPR-Cas9 we performed amplicon sequencing using the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The first PCR was performed using Q5 polymerase (NEB), the second nested PCR with KAPA HiFi HotStart Ready mix (Roche). Samples were sequenced paired-end (2x 250bp) on a MiSeq (Illumina).