Project description:To investigate the mechanism by which the microalgae-yeast co-culture system promotes wastewater denitrification. We concluded that microalgae and yeast exhibit a mutually beneficial relationship in the co-culture system. Microalgae nitrogen metabolism can be influenced by both miRNA and mRNA, and the presence of yeast stimulates gene expression in microalgae.
2023-07-12 | GSE231399 | GEO
Project description:Microbial chain elongation in soil
Project description:Toxic inhibitory compounds from lignocellulose pretreatment are the major obstacle to achieve high bioconversion efficiency in biorefinery fermentations. This study shows a unique glucose oxidation catalysis of Gluconobacter oxydans with its gluconic acid productivity free of inhibitor disturbance. The microbial experimentations and the transcriptome analysis revealed that both the activity of the membrane-bound glucose dehydrogenase (mGDH) and the transcription level of the genes in periplasmic glucose oxidation respiratory chain of G. oxydans were essentially not affected under the existence of inhibitory compounds. G. oxydans also rapidly converted furan and phenolic aldehyde inhibitors into the less toxic alcohols or acids. The synergy of the robust periplasmic glucose oxidation and the rapid inhibitor conversion of G. oxydans significantly elevated the efficiency of the oxidative fermentation in lignocellulose hydrolysate. The corresponding genes responsible for the conversion of furan and phenolic aldehyde inhibitors were also mined by DNA microarrays. The synergistic mechanism of G. oxydans provided an important option of metabolic modification for enhancing inhibitor tolerance of general fermentation strains.
2019-01-29 | GSE125739 | GEO
Project description:microbial community in chain elongation reactor
Project description:Microbial physiology plays a pivotal role in construction of a superior microbial cell factory for efficient production of desired products. Here we identified pcnB repression through genome-scale CRISPRi modulation combining fluorescence-activated cell sorting (FACS) and next-generation sequencing (NGS), which confers improved physiology for free fatty acids (FFAs) overproduction in Escherichia coli. The repression of pcnB could improve the stability and abundance of the transcripts involved in proton-consuming system, conferring a global improvement on cell membrane, redox state, and energy level. These physiological advantages facilitated further identification of acrD repression enhancing FFAs efflux. The engineered strain pcnBi-acrDi-fadR+ achieved 35.1 g l−1 FFAs production in fed-batch fermentation, which is the maximum titer in E. coli reported to date. This study underscores the significance of hidden genetic determinants in microbial biosynthesis and sheds light on the role of microbial physiologies in boosting microbial biosynthesis.
Project description:Microbial physiology plays a pivotal role in construction of a superior microbial cell factory for efficient production of desired products. Here we identified pcnB repression through genome-scale CRISPRi modulation combining fluorescence-activated cell sorting (FACS) and next-generation sequencing (NGS), which confers improved physiology for free fatty acids (FFAs) overproduction in Escherichia coli. The repression of pcnB could improve the stability and abundance of the transcripts involved in proton-consuming system, conferring a global improvement on cell membrane, redox state, and energy level. These physiological advantages facilitated further identification of acrD repression enhancing FFAs efflux. The engineered strain pcnBi-acrDi-fadR+ achieved 35.1 g l−1 FFAs production in fed-batch fermentation, which is the maximum titer in E. coli reported to date. This study underscores the significance of hidden genetic determinants in microbial biosynthesis and sheds light on the role of microbial physiologies in boosting microbial biosynthesis.