Project description:Mechanisms establishing higher-order chromosome structures and their roles in gene regulation are elusive. We analyzed chromosome architecture during nematode X-chromosome dosage compensation, which represses transcription via a dosage-compensation condensin complex (DCC) that binds hermaphrodite Xs and establishes megabase-size topologically associating domains (TADs). We show that DCC binding at high-occupancy sites (rex sites) defines eight TAD boundary locations. Single rex deletions disrupted boundaries, and single insertions created new boundaries, demonstrating one rex site is necessary and sufficient for DCC-dependent boundary formation. Deleting eight rex sites (8rexΔ) recapitulated TAD structure of DCC mutants, permitting analysis when chromosome-wide domain architecture was disrupted but most DCC binding remained. 8rexΔ animals exhibited no changes in X expression and lacked dosage-compensation mutant phenotypes. Hence, TAD boundaries are neither the cause nor consequence of gene repression during dosage compensation. Abrogating TAD structure did, however, reduce thermotolerance, accelerate aging, and shorten lifespan, implicating chromosome architecture in regulating stress responses and aging.
Project description:Mechanisms establishing higher-order chromosome structures and their roles in gene regulation are elusive. We analyzed chromosome architecture during nematode X-chromosome dosage compensation, which represses transcription via a dosage-compensation condensin complex (DCC) that binds hermaphrodite Xs and establishes megabase-size topologically associating domains (TADs). We show that DCC binding at high-occupancy sites (rex sites) defines eight TAD boundary locations. Single rex deletions disrupted boundaries, and single insertions created new boundaries, demonstrating one rex site is necessary and sufficient for DCC-dependent boundary formation. Deleting eight rex sites (8rexΔ) recapitulated TAD structure of DCC mutants, permitting analysis when chromosome-wide domain architecture was disrupted but most DCC binding remained. 8rexΔ animals exhibited no changes in X expression and lacked dosage-compensation mutant phenotypes. Hence, TAD boundaries are neither the cause nor consequence of gene repression during dosage compensation. Abrogating TAD structure did, however, reduce thermotolerance, accelerate aging, and shorten lifespan, implicating chromosome architecture in regulating stress responses and aging.
Project description:Mechanisms establishing higher-order chromosome structures and their roles in gene regulation are elusive. We analyzed chromosome architecture during nematode X-chromosome dosage compensation, which represses transcription via a dosage-compensation condensin complex (DCC) that binds hermaphrodite Xs and establishes megabase-size topologically associating domains (TADs). We show that DCC binding at high-occupancy sites (rex sites) defines eight TAD boundary locations. Single rex deletions disrupted boundaries, and single insertions created new boundaries, demonstrating one rex site is necessary and sufficient for DCC-dependent boundary formation. Deleting eight rex sites (8rexΔ) recapitulated TAD structure of DCC mutants, permitting analysis when chromosome-wide domain architecture was disrupted but most DCC binding remained. 8rexΔ animals exhibited no changes in X expression and lacked dosage-compensation mutant phenotypes. Hence, TAD boundaries are neither the cause nor consequence of gene repression during dosage compensation. Abrogating TAD structure did, however, reduce thermotolerance, accelerate aging, and shorten lifespan, implicating chromosome architecture in regulating stress responses and aging.
Project description:This SuperSeries is composed of the following subset Series: GSE14649: DCC binding and function (Expression Analysis) GSE14650: DCC binding and function (ChIP-chip: SDC-3, MIX-1, DPY-27, Mock) GSE14651: DCC binding and function (ChIP-chip: DPY-27) GSE14652: DCC binding and function (ChIP-chip: SDC-2) GSE14653: DCC binding and function (ChIP-chip: SDC-3, DPY-27, Mock) Refer to individual Series
Project description:The essential process of dosage compensation equalizes X-chromosome gene expression between C. elegans XO males and XX hermaphrodites through a dosage compensation complex (DCC) that resembles condensin. The DCC binds to both X chromosomes of hermaphrodites to repress transcription by half. Here we show that post-translational modification by the SUMO conjugation pathway is essential for sex-specific assembly of the DCC onto X. Depletion of the SUMO peptide in vivo severely disrupts binding of particular DCC subunits and causes changes in X-linked gene expression similar to those caused by disrupting genes encoding DCC subunits. Three DCC subunits are themselves SUMOylated, and depletion of SUMO preferentially reduces their binding to X, suggesting that SUMOylation of DCC subunits is essential for robust association with X. DCC SUMOylation is triggered by the signal that initiates DCC assembly onto X. The initial step of assembly--binding of X-targeting factors to recruitment sites on X (rex sites)--is independent of SUMOylation, but robust binding of the complete complex requires SUMOylation. SUMOylated DCC subunits are enriched at rex sites, and SUMOylation enhances interactions between X-targeting factors and condensin subunits that facilitate DCC binding beyond the low level achieved without SUMOylation. DCC subunits also participate in condensin complexes essential for chromosome segregation, but their SUMOylation occurs only in the context of the DCC. Our results reinforce a newly emerging theme in which multiple proteins of a complex are SUMOylated in response to a specific stimulus, leading to accelerated complex formation and enhanced function.