Project description:Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a novel peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We also analysed the effect of peptide on the proteome of S. pneumoniae. We found alteration of the proteome by the peptide with some proteins turned on or off in line with the transcriptomic changes. We therefore identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.
Project description:Zn and Mn are essential micronutrients for many bacteria including Streptococcus pneumoniae. While Zn performs vital structural or catalytic roles in certain proteins, in excess, Zn can inhibit Mn uptake by S. pneumoniae and displace, but not functionally replace Mn from key enzymes including superoxide dismutase A (SodA). Here, we show that the Ccn small regulatory RNAs promote S. pneumoniae Mn uptake and resistance to the oxidative stress. Furthermore, we demonstrate that these small regulatory RNAs modulate the ability of S. pneumoniae to cause invasive pneumonia. Altogether, these findings reveal a new layer of regulation of S. pneumoniae Zn and Mn homeostasis and suggest that there are factors in addition to known transporters that modulate intracellular Mn levels.
Project description:This SuperSeries is composed of the following subset Series: GSE31815: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + Glucose at MID-log growth phase GSE31816: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + GLucose at transition-phase of growth (TS) GSE31817: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + Galactose at MID-log growth phase GSE31818: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + galactose at transition-phase of growth (TS) Refer to individual Series
Project description:Streptococcus pneumoniae (S.p.) is the most common causative agent of community-acquired pneumonia worldwide. A key pathogenic mechanism that exacerbates severity of disease is the disruption of the alveolo-capillary barrier. However, the specific virulence mechanisms responsible for this in the human lung are not yet fully understood. RNA sequencing of Streptococcus pneumoniae transcriptome under infection media conditions, but without the presence of lung tissue, representing anon-host-infection scenario FCS+/- was analyzed,. RNA isolation was performed using an acidic phenol-chloroform extraction protocol (Wetzstein et al., 1992). After DNase-I treatment (Zymo Research, Germany), the RNA quality was checked by Trinean Xpose (Gentbrugge, Belgium) and the Agilent RNA Nano 6000 kit using an Agilent 2100 Bioanalyzer (Agilent Technologies, Böblingen, Germany). For RNA-seq transcriptomics, Ribo-Zero rRNA Removal Kit (Bacteria) from Illumina (San Diego, CA, USA) was used to remove the rRNA. TruSeq Stranded mRNA Library Prep Kit from Illumina (San Diego, CA, United States) was applied to prepare the cDNA libraries. The cDNAs were sequenced paired end on an Illumina HiSeq 1500 (San Diego, CA, United States) using 70 and 75 bp read length and a minimum sequencing depth of 10 million reads per library.
Project description:Transcriptome comparison of the Streptococcus pneumoniae D39 wild-type grown in CDM Plus 0mM Zn2+ to grown in CDM plus 0.2 mM Zn2+.
Project description:Streptococcus pneumoniae normally resides in the human nasopharynx in a non-disease state. In response to yet unknown triggers it can descend to the lower respiratory tract and/or invade the bloodstream. Regulation and activation of virulence genes play essential roles in this process of disease development. A putative transcriptional regulator in S. pneumoniae, MgrA, with homology to a virulence gene activator, mga, of Group A streptococcus (GAS) was previously identified as being required for development of pneumonia in a murine model. In this work we confirm that mgrA is required for both nasopharyngeal carriage and pneumonia. Transcriptional profiling by microarray technology through the growth course of a strain that bears a deletion of mgrA (AC1500) with that of a strain that over expresses Mgra (AC1481) is used to show that MgrA acts as a repressor of the previously characterized rlrA pathogenicity islet. This is manifested phenotypically by a decrease in adherence to epithelial cells in tissue culture since rlrA pathogenicity islet contains genes mediating adherence.