Project description:This SuperSeries is composed of the following subset Series:; GSE14449: Gene expression profiles of spontaneous metastasis in a K-ras/p53 mutant mouse model; GSE14458: Gene expression profiles of 344SQ lung adenocarcinoma cells with high metastatic potential (syngeneic mouse model) Experiment Overall Design: Refer to individual Series
Project description:Tumor cells that give rise to metastatic disease are a primary cause of cancer-related death and have not been fully elucidated in patients with lung cancer. Here, we addressed this question by using tissues from a mouse that develops metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. We identified a metastasis-prone population of tumor cells that differed from those with low metastatic capacity on the basis of having sphere-forming capacity in Matrigel cultures, increased expression of CD133 and Notch ligands, and relatively low tumorigenicity in syngeneic mice. Knockdown of jagged1 or pharmacologic inhibition of its downstream mediator phosphatidylinositol 3-kinase abrogated the metastatic but not the tumorigenic activity of these cells. We conclude from these studies on a mouse model of lung adenocarcinoma that CD133 and Notch ligands mark a population of metastasis-prone tumor cells and that the efficacy of Notch inhibitors in metastasis prevention should be explored. Keywords: two group comparison 344SQ subcutaneous tumors (from a lung adenocarcinoma cell line derived from a KrasLA1/+; p53R172HdelG/+ mouse that metastasizes widely following subcutaneous injection into syngeneic mice) were sorted by flow cytometry into CD133high and CD133low fractions. RNA samples from these fractions were processed and analyzed on Affymetrix Mouse Expression Array 430A 2.0 chips.
Project description:The biologic basis for NSCLC metastasis is not well understood. Here we addressed this deficiency by transcriptionally profiling tumors from a genetic mouse model of human lung adenocarcinoma that develops metastatic disease owing to the expression of K-rasG12D and p53R172H. As a tool to investigate the biologic basis for metastasis in this model and to query the roles of specific genes in this signature, we isolated adenocarcinoma cell lines from these mice and used them to develop a syngeneic tumor model in wild-type littermates. Transcriptional profiling of the highly metastatic subcutaneous tumors revealed genes that regulate, among other processes, epithelial-to-mesenchymal transition and intra-tumoral inflammation and angiogenesis, whereas the non-metastatic tumors did not. Experiment Overall Design: Cell lines from p53R172Hâg/+ K-rasLA1/+ mice were derived from tumor tissues removed at autopsy from two different mice (#344 and #393). The tissues were minced, placed in culture, and passed serially in RPMI 1640 supplemented with 10% fetal bovine serum (FBS), which yielded mass populations of tumor cells derived from primary lung tumors (344P and 393P), mediastinal lymph nodes (344LN and 393LN), and a subcutaneous site (344SQ). Syngeneic tumors were isolated, carefully dissected to remove the adjacent tissue, snap-frozen in liquid nitrogen and stored at -80° until use. Part of each dissected tumor was histologically evaluated by a board-certified pathologist. Snap-frozen samples were processed and analyzed on Affymetrix Mouse Expression Array 430A 2.0 chips. Experiment Overall Design: Expression profiling performed on 344SQ, 393P, and 393LN
Project description:The biologic basis for NSCLC metastasis is not well understood. Here we addressed this deficiency by transcriptionally profiling tumors from a genetic mouse model of human lung adenocarcinoma that develops metastatic disease owing to the expression of K-rasG12D and p53R172H. As a tool to investigate the biologic basis for metastasis in this model and to query the roles of specific genes in this signature, we isolated adenocarcinoma cell lines from these mice and used them to develop a syngeneic tumor model in wild-type littermates. Transcriptional profiling of the highly metastatic subcutaneous tumors revealed genes that regulate, among other processes, epithelial-to-mesenchymal transition and intra-tumoral inflammation and angiogenesis, whereas the non-metastatic tumors did not. Keywords: two group comparison
Project description:Tumor cells that give rise to metastatic disease are a primary cause of cancer-related death and have not been fully elucidated in patients with lung cancer. Here, we addressed this question by using tissues from a mouse that develops metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. We identified a metastasis-prone population of tumor cells that differed from those with low metastatic capacity on the basis of having sphere-forming capacity in Matrigel cultures, increased expression of CD133 and Notch ligands, and relatively low tumorigenicity in syngeneic mice. Knockdown of jagged1 or pharmacologic inhibition of its downstream mediator phosphatidylinositol 3-kinase abrogated the metastatic but not the tumorigenic activity of these cells. We conclude from these studies on a mouse model of lung adenocarcinoma that CD133 and Notch ligands mark a population of metastasis-prone tumor cells and that the efficacy of Notch inhibitors in metastasis prevention should be explored. Keywords: two group comparison
Project description:Our research aims to chart the circRNA expression profile and assess their impact on the lung PMN. We developed a lung PMN model and employed comprehensive RNA sequencing to analyze the differences in circRNA expression between normal and pre-metastatic lungs.Overall, our study highlights the crucial role of circRNAs in the formation of lung PMNs, supporting their potential as diagnostic or therapeutic targets for lung metastasis.
Project description:The biologic basis for NSCLC metastasis is not well understood. Here we addressed this deficiency by transcriptionally profiling tumors from a genetic mouse model of human lung adenocarcinoma that develops metastatic disease owing to the expression of K-rasG12D and p53R172H. We identified 2,209 genes that were differentially expressed in distant metastases relative to matched lung tumors. Mining of publicly available data bases revealed this expression signature in a subset of NSCLC patients who had a poorer prognosis than those without the signature. Primary lung adenocarcinomas and metastases from p53R172H∆g/+ K-rasLA1/+ mice or syngeneic tumors were isolated, carefully dissected to remove the adjacent tissue, snap-frozen in liquid nitrogen and stored at -80° until use. Part of each dissected tumor was histologically evaluated by a board-certified pathologist. Synthesis of cRNA and hybridization to Mouse Expression Array 430A 2.0 chips were performed. Two-sided t-paired tests using log-transformed expression values determined significant differences between primary tumors and metastasis.
Project description:We describe the lncRNA expression profiles of two HCC cell lines, one with high potential for metastasis to the lung (HCCLM3) and the other to lymph nodes (HCCLYM-H2). The HCCLM3(LM3) and HCCLM6 cell lines were derived from the same parental cell line MHCC-97H. LM3 metastasizes to the lung, while HCCLM6 can metastasize to multiple organs in a mouse model. By subcloning HCCLM6, we established the HCCLYM-H2(H2) cell line, which showed stable and high metastatic potential specific to the lymph nodes. In the present study, we compared the expression profiles of HCC cell lines with a similar genetic background but different potential for lung or lymph node metastasis. We found that expression signatures comprising lncRNAs and protein-coding mRNAs were significantly associated with organ-specific HCC metastasis. To further validate microarray data, we selected six lncRNAs (CR613944, BC058547, RP5-1014O16.1, NCRNA00173, lincRNA-CALCA, lincRNA-TSPAN8) and two mRNAs (TSPAN8, CALCB) in the two HCC cell lines using qRT-PCR. Data obtained from qRT-PCR and the microarray was consistent. Differentially expressed lncRNAs between high lymphatic metastatic potential HCC cell H2 and high lung metastatic potiential HCC cell LM3 were identified by microarray and validated using quantitative real-time polymerase chain reaction.
Project description:Despite the high prevalence and poor outcome of patients with metastatic lung cancer, the mechanisms of tumour progression and metastasis remain largely uncharacterized. We modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS1 and inactivation of the p53-pathway2, using conditional alleles in mice3-5. Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of KrasLSL-G12D/+;p53flox/flox mice initiates lung adenocarcinoma development4. Although tumours are initiated synchronously by defined genetic alterations, only a subset become malignant, suggesting that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK-2 related homeobox transcription factor Nkx2-1 (Ttf-1/Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1-negativity is pathognomonic of high-grade poorly differentiated tumours. Gain- and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limits metastatic potential in vivo. Interrogation of Nkx2-1 regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically-restricted chromatin regulator Hmga2. While focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function6-9, our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability, and increased metastatic proclivity. Thus, the oncogenic and suppressive functions of Nkx2-1 in the same tumour type substantiate its role as a dual function lineage factor. 23 cell lines derived from primary tumor or metastasis. 6 samples analyzed to determine the effect of Nkx2-1 knockdown on gene expression