Project description:The Atlantic killifish (Fundulus heteroclitus), native to estuarine areas of the Atlantic coast of the United States, has become a valuable ecotoxicological model due to its ability to acclimate to rapid environmental changes and adapt to polluted habitats. Killifish respond to rapid increases in salinity with an immediate change in gene expression, as well as long-term remodeling of the gills. Arsenic, a major environmental toxicant, was previously shown to inhibit the ability of killifish gill to respond to a rapid increase in salinity. We characterized miRNA expression in killifish gill under salinity acclimation with and without arsenic and identified a small group of highly expressed, well-conserved miRNAs as well as 16 novel miRNAs not yet identified in other organisms.
Project description:The proteome of the gill of Crassostrea nippona under low salinity stress involves the study and analysis of protein expression and regulation in response to environmental stress due to decreased salinity levels. This research focuses on understanding the molecular mechanisms by which the gills adapt to hypoosmotic conditions, which might include changes in ion transport proteins, osmoregulatory enzymes, stress response proteins, and other regulatory proteins involved in maintaining cellular homeostasis.
Project description:Ambient salinity is one of the crucial abiotic factors that poses substantial impacts on fish growth, development and reproduction. Greater amberjack (Seriola dumerili) is of high economic value because, and its reproduction and survival are sensitive to water salinity. To better understand the molecular adaptive mechanism to salinity fluctuations in greater amberjack, we performed comparative transcriptome analysis for gill and kidney between the optimum salinity (30 ppt, CK) and undesired regimes (10 and 40 ppt). For the gill, the skeletal development was provoked upon either hypo- or hyper-salinity stimuli, and the development of pronephros, as well as vascular endothelial cells and cortisol-mediated mitochondria-rich cell, was activated in response to the salinity alterations in kidney. These enhancements may encourage the maintenance of the gill and kidney structures and alleviate the salinity-induced damage. Ion channels NKCC1 and CFTR and the transporters for ammonium and other substances were highly upregulated in the gills and kidney, respectively, which act important roles in the osmoregulation of greater amberjack. More important, undesirable alterations of ambient salinity were found to pose adverse impacts on the immune function of greater amberjack, which may increase the risk of pathogen infection and reduce the security and yield of aquaculture of greater amberjack. In addition, deviation from the optimum salinity condition may result in undesirable uptake and accumulation of environmental toxins in greater amberjack, which attracts further attention to the food safety. Collectively, these novel findings advance our knowledge on adaptative mechanisms to ambient salinity oscillations in greater amberjack and provide a theoretical guidance for the optimal breeding mode for the aquaculture of greater amberjack.
Project description:To understand affected genes by HDA19 and HDA5/14/15/18 under salinity stress conditions, hda19 and hda5/14/15/18 mutants and control (Col-0) plants were analyzed under normal and salinity stress conditions using Arabidopsis custom microarrays (GEO array platform: GPL19830).