Project description:Using the HiSeqTM 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Peiâai 64S) were analyzed at the fertility sensitive stage under cold stress.These datas would be most beneficial for further studies investigating the molecular mechanisms of rice responses to cold stress.
Project description:The profiling was conducted with the Rice 3'-Tiling 135k Microarray designed from 31,439 genes deposited at IRGSP, RAP2 database (http://rapdb.lab.nig.ac.jp). We have identified and characterized a T-DNA insert rice mutant (Osfuct) with loss of α1,3-fucosyltransferase function. Matrix-assisted laser desorption/ionization time-of-flight analyses of the N-glycan revealed the lack of α1,3-fucose in the N-glycan structure of rice Osfuct mutant. The mutant displayed the pleiotropic developmental defects such as diminished growth, shorter plant height, less number of tillers, shorter panicle lengths and internode, impaired anther and pollen development. In addition, the anther was curved, pollen grains shapes were shriveled, pollen viability and pollen number per anther was dramatically decreased in Osfuct mutant. The complementation test of Osfuct mutant clearly exhibited that the phenotype is caused by the loss of α1,3-fucosyltransferase function bescause complementation line is rescued. Transcriptome profiling data revealed that several genes essential in plant developmental processes were significantly altered in Osfuct mutant including protein kinases, transcription factors, genes involved in metabolism, genes related to protein synthesis and hypothetical proteins. Moreover, Osfuct mutant exhibited the enhanced salt insensitivity. Taken together, these findings demonstrated that Osfuct plays a critical role in growth, anther, pollen development and salt stress response.
Project description:Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. Decrease of expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several CDKs, cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the deepest and most comprehensive dataset available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed. This SuperSeries is composed of the following subset Series: GSE13988: Rice expression atlas (1): Anther development GSE14298: Rice expression atlas (2): Pollination - Fertilization GSE14299: Rice expression atlas (3): Early embryogenesis GSE14300: Rice expression atlas (4): Vegetative tissues GSE14301: Rice expression atlas (5): Anther development (Agilent data) Refer to individual Series
Project description:Rice anthers at anthesis stage from the wild type and gori mutant anther (Dongjin cultivar) We collected the sample from our field and immediately froze the samples with liquid nitrogen.
Project description:The R-loop is a common chromatin feature presented from prokaryotic to eukaryotic genomes and has been revealed to be involved in multiple cellular processes and associated with many human diseases. Here, we take the advantage of our recently developed ssDRIP-seq method to profile genome-wide R-loop levels and provided a first-hand R-loop atlas of Rice (Oryza sativa) at different developmental stages.
Project description:We created a triple loss-of-function/knockout mutant targeting three rice genes simultaneously. The three selected genes are as follows: OsADF1 (LOC_Os02g44470), OsADF6 (LOC_Os04g46910), and OsADF9 (LOC_Os07g30090). These three ADFs are strongly transcriptional expressed in the rice mature anthers (stages 13) and bi-/tricelluler pollen. The triple mutant of these OsADFs does not produce self-fertilizing seeds due to the short length of the pollen tube (male-sterile). This data is about mature anther transcriptome data about the triple mutant of OsADFs (ADFmT). We sampled mature anther for the analysis.