Project description:Butyriboletus hainanensis, a macrofungus belonging to the Boletaceae family, is named after its collection location on Hainan Island, China. However, little is known about its mitochondrial genome and its phylogenetic relationship with other boletes. In this study, we utilized next-generation sequencing technology to sequence the mitochondrial genome of Bu. hainanensis. Our findings revealed that the mitochondrial genome of this species is presumably a circular DNA molecule spanning 36,592 bp. It consists of 15 protein-coding genes, 27 transfer RNA genes, and two ribosomal RNA genes. The base composition of the mitochondrial genome is as follows: A (36.64%), C (12.22%), G (11.73%), and T (39.41%), with a GC content of 23.95%. Additionally, a phylogenetic tree was constructed based on 22 mitochondrial genomes, which provided valuable insights into the phylogenetic relationships of Bu. hainanensis with other boletes for the first time.