Project description:To elucidate the mechanisms of fruit body development in Pleurotus ostreatus, the transcriptomes of four different development stages including mycelium, primordium, young fruit body, and mature fruit body were obtained by RNA-seq.
Project description:The disease of type 2 diabetes mellitus (T2DM) is principally induced by insufficient insulin secretion and insulin resistance. In the current study, Sanghuangporus vaninii fruit body polysaccharide (SVP) was prepared and structurally characterized. It was shown that the yield of SVP was 1.91%, and SVP mainly contains small molecular weight polysaccharides. Afterward, the hypoglycemic and hypolipidemic effects and the potential mechanism of SVP in T2DM mice were investigated. The results exhibited oral SVP could reverse the body weight loss, high levels of blood glucose, insulin resistance, hyperlipidemia, and inflammation in T2DM mice. Oral SVP increased fecal short-chain fatty acids (SCFAs) concentrations of T2DM mice. Additionally, 16S rRNA sequencing analysis illustrated that SVP can modulate the structure and function of intestinal microflora in T2DM mice, indicating as decreasing the levels of Firmicutes/Bacteroidetes, Flavonifractor, Odoribacter, and increasing the levels of Weissella, Alloprevotella, and Dubosiella. Additionally, the levels of predicted metabolic functions of Citrate cycle, GABAergic synapse, Insulin signaling pathway were increased, and those of Purine metabolism, Taurine and hypotaurine metabolism, and Starch and sucrose metabolism were decreased in intestinal microflora after SVP treatment. These findings demonstrate that SVP could potentially play hypoglycemic and hypolipidemic effects by regulating gut microflora and be a promising nutraceutical for ameliorating T2DM.
Project description:Sanghuangporus vaninii, called "Sanghuang," is orally used for health care, tumor, and inflammation treatment in Asia. However, the safety of S. vaninii has not been evaluated. The major compounds analysis showed that aqueous extracts of S. vaninii fruiting body were rich in polysaccharides, nucleotides, and polyphenols. Then, the aqueous was given orally to Sprague-Dawley rats for toxical test. In acute toxicity study, the maximum tolerated dose was 21 g/kg. In 17-week repeated dose toxicity experiment, all rats had no abnormal reaction among control group, low dose group (0.15 g/kg) and middle dose group (1.00 g/kg). At high dose group (6.00 g/kg), the feces began to darken on 16th day (D16), and turned to drug stained stool on D21, all rats recovered on the 3rd day (D92) of recovery period. During the whole experiment, there were no animal death and no treatment-related changes in any of the parameters under the all doses. These results indicated the No-Observed Adverse Effect Level of aqueous extract of S. vaninii fruiting body was 1.0 g/kg.