Project description:Iron-sulfur minerals such as pyrite are found in many marine benthic habitats. At deep-sea hydrothermal vent sites they occur as massive sulfide chimneys. Hydrothermal chimneys formed by mineral precipitation from reduced vent fluids upon mixing with cold oxygenated sea water. While microorganisms inhabiting actively venting chimneys and utilizing reduced compounds dissolved in the fluids for energy generation are well studied, only little is known about the microorganisms inhabiting inactive sulfide chimneys. We performed a comprehensive meta-proteogenomic analysis combined with radiometric dating to investigate the diversity and function of microbial communities found on inactive sulfide chimneys of different ages from the Manus Basin (SW Pacific). Our study sheds light on potential lifestyles and ecological niches of yet poorly described bacterial clades dominating inactive chimney communities.
Project description:To identify the putative genes involved in theacrine biosynthesis in tea plant, we carried out comparative transcriptome analysis of Kucha (K6 and K11) and conventional varieties (YH 9 and QX 1).
Project description:Pu-erh tea has attracted increasing attention worldwide because of its special flavor and health effects, but its impact on composition and function of the gut microbiota remains unclear. The aim of this study was to investigate effects of aqueous extracts of fermented (ripe) and non-fermented (raw) Pu-erh teas on the composition and function of intestinal microbiota of rats with diet-induced obesity. We conducted a comparative metagenomic and metaproteomic investigation of the microbial communities in cecal samples taken from obese rats administrated with or without extracts of raw and ripe Pu-erh tea. By analyzing the composition and diversity of 16S rRNA amplicons and expression profiles of 814 distinct proteins, we found that, despite differences in the chemical compositions of the raw and ripe Pu-erh tea, administration of either at two different doses (0.15 and 0.40 g/Kg body weight), significantly (P<0.05) increased community diversity, and changed the composition of the cecal microbiota by increasing the relative abundances of Firmicutes and decreasing those of Bacteroidetes. Community metabolic processes including sucrose metabolism, glycolysis, syntheses of proteins, rRNA and antibiotics were significantly (P<0.05), or had a tendency (0.10<P<0.05) to be, promoted by enriching relevant enzymes. Furthermore, evidences from population, molecular and metabolic levels have shown that polyphenols of raw Pu-erh tea and their metabolites can promote potentially the growth of Akkermansia municiphila by stimulating the type II and III secretion system protein, elongation factor Tu, and glyceraldehyde-3-phosphate dehydrogenase. This study has provided new evidences for the prebiotic effects of Pu-erh tea.
Project description:Phytoplankton blooms represent hotspots of primary production and lead to the formation of particulate organic matter composed of living and dead algal cells. These particles are characterized by steep chemical gradients, for instance in oxygen concentration, that provide diverse ecological niches for specifically adapted microbes to thrive. Particulate fractions were collected at almost daily intervals between early March and late May in 2018. Amplicon sequencing and Meta-omics was used to asses microbial community composition and functionality at different time points.
Project description:Microbial fermentation is involved in the processing of a dark tea popular for centuries in Northwest China which has shown many health benefits. This study will examine anti-obesity, hyperlipidemic and hyperglycemic effects of CGMCC No.8730 Eurotium cristatum (EC) fermented dark tea (8730DT).
Project description:The availability of organic carbon represents a major bottleneck for the development of soil microbial communities and the regulation of microbially-mediated ecosystem processes. However, there is still a lack of knowledge on how the lifestyle and population abundances are physiologically regulated by the availability of energy and organic carbon in soil ecosystems. To date, functional insights into the lifestyles of microbial populations have been limited by the lack of straightforward approaches to the tracking of the active microbial populations. Here, by the use of an comprehensiv metaproteomics and genomics, we reveal that C-availability modulates the lifestyles of bacterial and fungal populations in drylands and determines the compartmentalization of functional niches. This study highlights that the active diversity (evaluated by metaproteomics) but not the diversity of the whole microbial community (estimated by genome profiling) is modulated by the availability of carbon and is connected to the ecosystem functionality in drylands.
2017-07-07 | PXD003572 | Pride
Project description:Microbial Diversity in Various Environmental Niches