Project description:RNA-Seq has provided valuable insights into global gene expression in a wide variety of organisms. Using a modified RNA-Seq approach and Illumina's high-throughput sequencing technology, we globally identified 5'-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. A substantial fraction of 5'-ends obtained by this method were consistent with results obtained using global RNA-Seq and 5'RACE. As expected, many 5'-ends were positioned a short distance upstream of annotated genes. We also captured 5'-ends within intergenic regions, providing evidence for the expression of un-annotated genes and non-coding RNAs, and detected numerous examples of antisense transcription, suggesting additional levels of complexity in gene regulation in DC3000. Importantly, targeted searches for sequence patterns in the vicinity of 5'-ends revealed over 1200 putative promoters and other regulatory motifs, establishing a broad foundation for future investigations of regulation at the genomic and single gene levels.
Project description:Cellulose, whose production is controlled by c-di-GMP, is a commonly found exopolysaccharide in bacterial biofilms. Pseudomonas syringae pv. tomato (Pto) DC3000, a model organism for molecular studies of plant-pathogen interactions, carries the wssABCDEFGHI operon for the synthesis of acetylated cellulose. The high intracellular levels of the second messenger c-di-GMP induced by the overexpression of the heterologous diguanylate cyclase PleD stimulate cellulose production and enhance air-liquid biofilm (pellicle) formation. To characterize the mechanisms involved in Pto DC3000 pellicle formation, we studied this process using mutants lacking flagella, biosurfactant or different extracellular matrix components, and compared the pellicles produced in the absence and in the presence of PleD. We have discovered that neither alginate nor the biosurfactant syringafactin are needed for their formation, whereas cellulose and flagella are important but not essential. We have also observed that the high c-di-GMP levels conferred more cohesion to Pto cells within the pellicle and induced the formation of intracellular inclusion bodies and extracellular fibres and vesicles. Since the pellicles were very labile and this greatly hindered their handling and processing for microscopy, we have also developed new methods to collect and process them for scanning and transmission electron microscopy. These techniques open up new perspectives for the analysis of fragile biofilms in other bacterial strains.
Project description:Previously, we conducted a mutant screen of Pseudomonas syringae pv. tomato strain DC3000 to identify genes that contribute to virulence on Arabidopsis thaliana plants. Here we describe the characterization of one mutant strain, DB4H2, which contains a single Tn5 insertion in PSPTO3576, an open reading frame that is predicted to encode a protein belonging to the TetR family of transcriptional regulators. We demonstrate that PSPTO3576 is necessary for virulence in DC3000 and designate the encoded protein TvrR (TetR-like virulence regulator). TvrR, like many other TetR-like transcriptional regulators, negatively regulates its own expression. Despite the presence of a putative HrpL binding site in the tvrR promoter region, tvrR is not regulated by HrpL, an alternative sigma factor that regulates the expression of many known DC3000 virulence genes. tvrR mutant strains grow comparably to wild-type DC3000 in culture and possess an intact type III secretion system. However, tvrR mutants do not cause disease symptoms on inoculated A. thaliana and tomato plants, and their growth within plant tissue is significantly impaired. We demonstrate that tvrR mutant strains are able to synthesize coronatine (COR), a phytotoxin required for virulence of DC3000 on A. thaliana. Given that tvrR mutant strains are not defective for type III secretion or COR production, tvrR appears to be a novel virulence factor required for a previously unexplored process that is necessary for pathogenesis.
Project description:The complete genomic sequence of Pseudomonas syringae pv. syringae B728a (Pss B728a) has been determined and is compared with that of P. syringae pv. tomato DC3000 (Pst DC3000). The two pathovars of this economically important species of plant pathogenic bacteria differ in host range and other interactions with plants, with Pss having a more pronounced epiphytic stage of growth and higher abiotic stress tolerance and Pst DC3000 having a more pronounced apoplastic growth habitat. The Pss B728a genome (6.1 Mb) contains a circular chromosome and no plasmid, whereas the Pst DC3000 genome is 6.5 mbp in size, composed of a circular chromosome and two plasmids. Although a high degree of similarity exists between the two sequenced Pseudomonads, 976 protein-encoding genes are unique to Pss B728a when compared with Pst DC3000, including large genomic islands likely to contribute to virulence and host specificity. Over 375 repetitive extragenic palindromic sequences unique to Pss B728a when compared with Pst DC3000 are widely distributed throughout the chromosome except in 14 genomic islands, which generally had lower GC content than the genome as a whole. Content of the genomic islands varies, with one containing a prophage and another the plasmid pKLC102 of Pseudomonas aeruginosa PAO1. Among the 976 genes of Pss B728a with no counterpart in Pst DC3000 are those encoding for syringopeptin, syringomycin, indole acetic acid biosynthesis, arginine degradation, and production of ice nuclei. The genomic comparison suggests that several unique genes for Pss B728a such as ectoine synthase, DNA repair, and antibiotic production may contribute to the epiphytic fitness and stress tolerance of this organism.
Project description:The plant pathogen Pseudomonas syringae pv. tomato DC3000 (DC3000) is found in a wide variety of environments and must monitor and respond to various environmental signals such as the availability of iron, an essential element for bacterial growth. An important regulator of iron homeostasis is Fur (ferric uptake regulator), and here we present the first study of the Fur regulon in DC3000. Using chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq), 312 chromosomal regions were highly enriched by coimmunoprecipitation with a C-terminally tagged Fur protein. Integration of these data with previous microarray and global transcriptome analyses allowed us to expand the putative DC3000 Fur regulon to include genes both repressed and activated in the presence of bioavailable iron. Using nonradioactive DNase I footprinting, we confirmed Fur binding in 41 regions, including upstream of 11 iron-repressed genes and the iron-activated genes encoding two bacterioferritins (PSPTO_0653 and PSPTO_4160), a ParA protein (PSPTO_0855), and a two-component system (TCS) (PSPTO_3382 to PSPTO_3380).
Project description:Whole genome sequencing revealed the presence of a genomic anomaly in the region of 4.7 to 4.9 Mb of the Pseudomonas syringae pv. tomato (Pst) DC3000 genome. The average read depth coverage of Pst DC3000 whole genome sequencing results suggested that a 165 kb segment of the chromosome had doubled in copy number. Further analysis confirmed the 165 kb duplication and that the two copies were arranged as a direct tandem repeat. Examination of the corresponding locus in Pst NCPPB1106, the parent strain of Pst DC3000, suggested that the 165 kb duplication most likely formed after the two strains diverged via transposition of an ISPsy5 insertion sequence (IS) followed by unequal crossing over between ISPsy5 elements at each end of the duplicated region. Deletion of one copy of the 165 kb region demonstrated that the duplication facilitated enhanced growth in some culture conditions, but did not affect pathogenic growth in host tomato plants. These types of chromosomal structures are predicted to be unstable and we have observed resolution of the 165 kb duplication to single copy and its subsequent re-duplication. These data demonstrate the role of IS elements in recombination events that facilitate genomic reorganization in P. syringae.
Project description:The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria.
Project description:UnlabelledPlant-pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an extracytoplasmic function (ECF) sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and genes involved with resisting osmotic and oxidative stress. AlgU is active while these bacteria are associated with plants, where its presence supports bacterial growth and disease symptoms. We found that AlgU is an important virulence factor for P. syringae pv. tomato DC3000 but that alginate production is dispensable for disease in host plants. This implies that AlgU regulates additional genes that facilitate bacterial pathogenesis. We used transcriptome sequencing (RNA-seq) to characterize the AlgU regulon and chromatin immunoprecipitation sequencing (ChIP-seq) to identify AlgU-regulated promoters associated with genes directly controlled by this sigma factor. We found that in addition to genes involved with alginate and osmotic and oxidative stress responses, AlgU regulates genes with known virulence functions, including components of the Hrp type III secretion system, virulence effectors, and the hrpL and hrpRS transcription regulators. These data suggest that P. syringae pv. tomato DC3000 has adapted to use signals that activate AlgU to induce expression of important virulence functions that facilitate survival and disease in plants.ImportancePlant immune systems produce antimicrobial and bacteriostatic conditions in response to bacterial infection. Plant-pathogenic bacteria are adapted to suppress and/or tolerate these conditions; however, the mechanisms controlling these bacterial systems are largely uncharacterized. The work presented here provides a mechanistic explanation for how P. syringae pv. tomato DC3000 coordinates expression of multiple genetic systems, including those dedicated to pathogenicity, in response to environmental conditions. This work demonstrates the scope of AlgU regulation in P. syringae pv. tomato DC3000 and characterizes the promoter sequence regulated by AlgU in these bacteria.
Project description:Pseudomonas syringae pv. tomato DC3000 contains genes for 15 sigma factors. The majority are members of the extracytoplasmic function class of sigma factors, including five that belong to the iron starvation subgroup. In this study, we identified the genes controlled by three iron starvation sigma factors. Their regulons are composed of a small number of genes likely to be involved in iron uptake.