Project description:We present the de novo transcriptome sequencing, analysis and microarray development for a vertebrate herbivore, the woodrat (Neotoma spp.). This genus is of ecological and evolutionary interest, especially with respect to ingestion and hepatic metabolism of potentially toxic plant secondary compounds. We generated a liver transcriptome of the desert woodrat (Neotoma lepida) with the Roche 454 platform. The assembled contigs were well annotated using rodent references (99.7% annotation), and biotransformation function was reflected in the gene ontology. The transcriptome was used to develop a custom microarray (eArray, Agilent). To compare the effect of native diet/habitat and phylogenetic similarity, we performed 3 experiments with the Neotoma probes only: one across species with similar habitat niches (N. lepida versus N. bryanti, Palm Springs), one across species with different habitat niches (N. lepida versus N. bryanti, Caspers Wilderness), and one across populations within a species (N. bryant Palm Springs versus Caspers Wilderness). The resulting one-color arrays had high technical and biological quality. Probes designed from the woodrat transcriptome performed significantly better than functionally similar probes from the Norway rat (Rattus norvegicus). Biotransformation processes and functions were highly represented in the results. Comparisons between ecologically similar woodrat species revealed fewer gene expression differences than ecologically different woodrat species. The conspecific comparison had overall fewest differences. Gene expression was compared across 3 groups of woodrats: Neotoma lepida (n=4), N. bryanti Palm Springs (n=4), and N. bryanti Caspers Wilderness (n=4). Animals were fed a rabbit chow diet, called control; intake was monitored over 10 days, after which RNA was extracted from hepatic tissue. One-color arrays were performed.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:We compared gene expression in the foregut tissues of two rodent species: Stephen's woodrat (Neotoma stephensi), which harbors a dense foregut microbial community, and the lab rat (Rattus norvegicus), which lacks such a community. We found that woodrats have higher abundances of transcripts associated with smooth muscle processes, specifically a higher expression of the smoothelin-like 1 gene, which may assist in contractile properties of this tissue to retain food material in the foregut chamber. The expression of genes associated with keratinization and cornification exhibited a complex pattern of differences between the two species, suggesting distinct molecular mechanisms for this process in each of the two species. Lab rats exhibited higher abundances of transcripts associated with immune function, likely to inhibit microbial growth in the foregut of this species. Some of our results were consistent with previous findings in ruminants (high expression of facilitative glucose transporters, lower expression of B4galnt2), suggestive of possible convergent evolution, while other results were unclear, and perhaps represent novel host-microbe interactions in rodents. Overall, our results suggest that harboring a foregut microbiota is associated with changes to the functions and host-microbe interactions of the foregut tissues.
Project description:We present the de novo transcriptome sequencing, analysis and microarray development for a vertebrate herbivore, the woodrat (Neotoma spp.). This genus is of ecological and evolutionary interest, especially with respect to ingestion and hepatic metabolism of potentially toxic plant secondary compounds. We generated a liver transcriptome of the desert woodrat (Neotoma lepida) with the Roche 454 platform. The assembled contigs were well annotated using rodent references (99.7% annotation), and biotransformation function was reflected in the gene ontology. The transcriptome was used to develop a custom microarray (eArray, Agilent). To compare the effect of native diet/habitat and phylogenetic similarity, we performed 3 experiments with the Neotoma probes only: one across species with similar habitat niches (N. lepida versus N. bryanti, Palm Springs), one across species with different habitat niches (N. lepida versus N. bryanti, Caspers Wilderness), and one across populations within a species (N. bryant Palm Springs versus Caspers Wilderness). The resulting one-color arrays had high technical and biological quality. Probes designed from the woodrat transcriptome performed significantly better than functionally similar probes from the Norway rat (Rattus norvegicus). Biotransformation processes and functions were highly represented in the results. Comparisons between ecologically similar woodrat species revealed fewer gene expression differences than ecologically different woodrat species. The conspecific comparison had overall fewest differences.
Project description:Malaria is as one of the most debilitating mosquito-borne global health burdens. While much of the malaria and mosquito-borne disease attention have focused on Africa, South East Asia accounts for a sizable portion of the malaria global burden. Moreover, about 50% of the Asian malaria incidence and deaths have been from India. The completion of genome sequence of Anopheles stephensi, a major malaria vector in Asia, offers new opportunities for global health innovation, not to mention for progress in deciphering the vectorial ability of this mosquito species at a molecular level. Moving forward, tissue-based expression profiling would be the next obvious step in understanding gene functions of Anopheles stephensi. We report here the first study, to the best of our knowledge, on transcriptomic profile of four important organs of an adult female Anopheles stephensi mosquito (midgut, Malpighian tubules, fat body and ovary). In all, we identified over 21,000 transcripts corresponding to more than 12,000 gene loci from these four tissues. This study provides the tissue-based expression profiles of majority of annotated transcripts in Anopheles stephensi genome, and the dynamics of alternative splicing in these tissues. Understanding the transcript expression and gene function at the tissue level would immensely help in enhancing our knowledge of this important vector and decipher the putative role of these tissues. This knowledge might in turn provide the basis of selection of candidates for future studies on vectorial ability and novel molecular targets to intercept malaria transmission.