Project description:Nigeria is an Afrotropical region with considerable ecological heterogeneity and levels of biotic endemism. Among its vertebrate fauna, reptiles have broad distributions, thus, they constitute a compelling system for assessing the impact of ecological variation and geographic isolation on species diversification. The red-headed rock agama, Agama agama, lives in a wide range of habitats and, thus, it may show genetic structuring and diversification. Herein, we tested the hypothesis that ecology affects its genetic structure and population divergence. Bayesian inference phylogenetic analysis of a mitochondrial DNA (mtDNA) gene recovered four well-supported matrilines with strong evidence of genetic structuring consistent with eco-geographic regions. Genetic differences among populations based on the mtDNA also correlated with geographic distance. The ecological niche model for the matrilines had a good fit and robust performance. Population divergence along the environmental axes was associated with climatic conditions, and temperature ranked highest among all environmental variables for forest specialists, while precipitation ranked highest for the forest/derived savanna, and savanna specialists. Our results cannot reject the hypothesis that niche conservatism promotes geographic isolation of the western populations of Nigerian A. agama. Thus, ecological gradients and geographic isolation impact the genetic structure and population divergence of the lizards. This species might be facing threats due to recent habitat fragmentation, especially in western Nigeria. Conservation actions appear necessary.
Project description:The agamid lizard Phrynocephalus melanurus is restricted to Northwest China (Dzungar Basin) and the adjacent Eastern Kazakhstan (Zaisan and Alakol basins). To elucidate the phylogeography of P. melanurus, we obtained the mitochondrial DNA COI segments of 175 sampled lizards from 44 localities across the whole distribution. Phylogenetic analyses revealed two main Clades comprising five geographically structured lineages (I, IIa, IIb1, IIb2, and IIb3) that fit an isolation-by-distance (IBD) model. The divergence from the most recent common ancestor was dated to ~1.87 million years ago (Ma). Demographic analyses demonstrated lineage-specific response to past climate change: stable population for Clade I, Subclade IIb1; past population expansion for IIb3 since 0.18 Ma, respectively. Bayesian phylogeographic diffusion analyses detected initial spreading at the Saur Mount vicinity, approximately 1.8 Ma. Historical species distribution model (SDM) projected expansion of the suitable habitat in the last interglacial and shift and contraction in the last glacial maximum and Holocene epochs. The SDM predicted a drastic reduction in suitable area throughout the range as a response to future climate change. Our findings suggest that the evolution of P. melanurus followed a parapatric divergence with subsequent dispersal and adaptation to cold and dry environments during the Quaternary. Overall, this work improves our understanding of the lineage diversification and population dynamics of P. melanurus, providing further insights into the evolutionary processes that occurred in Northwest China and adjacent Eastern Kazakhstan.
Project description:The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA) gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major parts of species range were analyzed. Genetic distances show a deep divergence between Ph. mystaceus khorasanusssp. n. from Khorasan Razavi Province and all other populations of Ph. mystaceus. The new subspecies can be distinguished from other populations of Ph. mystaceus by a combination of several morphological features. Molecular and morphological analyses do not support the validity of other Ph. mystaceus subspecies described from Middle Asia and Caspian basin. Geographic variations in the Ph. mystaceus species complex and the status of previously described subspecies were discussed.
Project description:Intraspecific rearrangements of mitochondrial genomes are rarely reported in reptiles, even in vertebrates. The sunwatcher toad-headed agama, Phryncoephalus helioscopus, can serve as an excellent model for investigating the dynamic mitogenome structure at intraspecific level. To date, seven subspecies of P. helioscopus are well recognized, but little is known about the mitogenomic evolution among different subspecies. In this study, complete mitogenomes of subspecies P. helioscopus varius II and P. helioscopus cameranoi were determined by next-generation sequencing, and another P. helioscopus varius I retrieved from GenBank was compiled for comparative analysis. The nucleotide composition and the codon usage are similar to those previously published from toad-headed agamas. P. helioscopus varius II and P. helioscopus cameranoi have 23 tRNA genes, including standard 22 tRNA genes and one extra tRNA-Phe (tRNA-Phe duplication). Gene order and phylogenetic analyses in the genus Phrynocephalus support prevalent intraspecific gene rearrangement in P. helioscopus and other congener species including P. erythrurus, P. vlangalii, and P. forsythii. Six different mitochondrial gene arrangements are observed in Phrynocephalus. Overall, the occurrence of rearrangements may result from multiple independent structural dynamic events. The split of the two subspecies in P. helioscopus was dated at approximately 2.34 million years ago (Ma). Two types of gene rearrangements are found in the three mitogenomes of P. helioscopus, and this intraspecific rearrangement phenomenon can be explained by the tandem duplication/random loss (TDRL) model. Post duplication, the alternative loss types can occur in 0.23-0.72 Ma, suggesting that the duplication and fixation of these rearrangements can occur quite quickly. These findings highlight the need for more mitogenomes at the population level in order to better understand the potentially rampant intraspecific mitogenomic reorganization in Phrynocephalus.
| S-EPMC8872181 | biostudies-literature
Project description:The sunwatcher toad-headed agama Phrynocepahlus helioscopus and GBS raw sequence reads