Project description:To dissect the molecular mechanisms underlying drought tolerance (DT) in rice, transcriptome differences of a DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing. Results revealed a differential constitutive gene expression prior to stress and distinct global transcriptome reprogramming among three genotypes under time-series drought stress, consistent with their differential genotypes and DT phenotypes. DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing.The drought stress treatment was started by withholding water at the tillering stage. The days were counted after the AWC in the soil reached 20% to allow drought measurements at precisely determined intervals, and the soil water content reached 15%, 10% and 7.5% after 1d, 3d and 4d drought treatment, respectively.Three top leaves for each sample were harvested for each genotype under 1d and 3d drought stress and control conditions. All samples were immediately frozen in liquid nitrogen and stored at -80C and then for transcriptome sequencing.
Project description:To dissect the molecular mechanisms underlying drought tolerance (DT) in rice, transcriptome differences of a DT introgression line H471, the DT donor P28 and the drought sensitive recurrent parent HHZ under drought stress were investigated using deep transcriptome sequencing. Results revealed a differential constitutive gene expression prior to stress and distinct global transcriptome reprogramming among three genotypes under time-series drought stress, consistent with their differential genotypes and DT phenotypes.
Project description:Lotus japonicus is a model legume broadly used to study transcriptome regulation under different stress conditions and microorganism interaction. Understanding how this model plant respond gainst alkaline stress will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important response mechanisms activated during alkaline stress, we explored by microarray analysis the transcriptome regulation occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after 21 days of alkaline stress.
Project description:To clarify the molecular mechanism of drought resistance in Phormium tenax, transcriptome was sequenced by the Illumina sequencing technology under normal and dry conditions, respectively. In total, 4,063,419 high quality sequencing contigs, 175,649 transcripts and 75,265 unigenes were obtained in this study. A total of 4,380 genes were differentially expressed, 2,698 of which were finally annotated under drought stress. Differentially expression analysis was also performed upon drought treatment.
Project description:The members of bHLH transcription factor superfamily are known to play key role in plant development and abiotic stress response. Loss-of-function of OsbHLH148 gene resulted in increased sensitivity of rice plants to drought stress. To identify the targets of OsbHLH148 and dissect the drought stress response pathway regulated by it, we performed transcriptome profiling of Osbhlh148 mutant plants under drought stress as well as well-watered conditions by RNA-sequencing.
Project description:Heat shock factors (Hsfs) are known to regulate heat and drought stress response by controlling the expression of heat shock proteins and oxidative stress responsive genes. Loss-of-function of OsHSFA2e gene resulted in increased sensitivity of rice plants to drought and heat stress. To identify the targets of OsHSFA2e and dissect the stress response pathway regulated by it, we performed transcriptome profiling of Oshsfa2e mutant plants under drought stress as well as well-watered conditions by RNA-sequencing.
Project description:In this study, genome-wide transcriptome profiling was used to understand molecular genetic mechanism of drought tolerance in rice. Illumina High-Seq 2000 platform was used for sequencing RNA from leaf tissue of rice plants exposed to controlled drought stress and well-watered conditions. The differentially expressed genes were used to identify biological process and cis-regulatory elements enriched under drought stress compared to well-watered conditions.
2015-01-16 | GSE65022 | GEO
Project description:Grape transcriptome sequencing under drought stress