Project description:mRNA expression profiling of the embryo, endosperm (micropylar, peripheral, chalazal), and seed coat (outer, inner, chalazal, chalazal proliferating tissue) of the developing Brassica napus seed. Tissues were isolated using laser microdissection (LMD) from Brassica napus seeds at the globular, heart, and mature green stages of seed development.
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress.
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress. Two-condition experiment, control vs heat stress, 2 time points
Project description:Time course of gene expression profiles during seed development and maturation in Brassica napus were studied using Combimatrix Brassica microarray.
Project description:Time course of gene expression profiles during seed development and maturation in Brassica napus were studied using Combimatrix Brassica microarray. The time course expression of 90K Brassica napus EST contigs were measured at 8 developing seed stages of 10, 15, 20, 25, 30, 35, 40 and 45 DAF (days after flowering) using single color microarray
Project description:Identification of differentially expressed genes in seeds and silique walls at the seed-filling stage in Brassica napus through transcriptional profiling
Project description:Illumina mRNA-Seq is comparable to microarray analysis for transcript quantification but has increased sensitivity and, importantly, the potential to distinguish between homoeologous genes in polyploids. Using a novel curing process, we adapted a reference sequence that was a consensus derived from ESTs from both Brassica A and C genomes to one containing A and C genome versions for each of the 94,558 original unigenes. We aligned reads from Brassica napus to this cured reference, finding 38% more reads mapping in resynthesised lines and 28% in natural lines. Where the A and C versions differed at single nucleotide positions, termed inter-homoeologue polymorphisms (IHPs), we were able to apportion expression in the polyploid to the A or C genome homoeologues. 43,761 unigenes contained at least one IHP, with a mean frequency of 10.5 per kb unigene sequence. 6,350 of the unigenes with IHPs were differentially expressed between homoeologous gene pairs in resynthesised B. napus. 3,212 unigenes showed a similar pattern of differential expression across a range of natural B. napus crop varieties and, of these, 995 were in common with resynthesised B. napus. Functional classification showed over-representation in gene ontology categories not associated with dosage-sensitivity.