Project description:Homologous meiotic recombination starts with DNA double-strand breaks (DSBs) generated by SPO11 protein. SPO11 is critical for meiosis in most species but the DSBs it makes are also dangerous because of their mutagenic and gametocidal potential, so cells must foster beneficial functions of SPO11 while minimizing its risks. SPO11 mechanism and regulation remain poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to its essential partner TOP6BL. Similar to their yeast orthologs, SPO11–TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA. Unlike in yeast, however, dimeric (2:2) assemblies of mouse SPO11–TOP6BL cleaves DNA to form covalent 5 prime attachments requiring SPO11 active site residues, divalent metal ions, and SPO11 dimerization. Surprisingly, SPO11 can also manifest topoisomerase activity by relaxing supercoils and resealing DNA that it has nicked. Structure modeling with AlphaFold3 illuminates the protein-DNA interface and suggests that DNA is bent prior to cleavage. Deep sequencing of in vitro cleavage products reveals a rotationally symmetric base composition bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved by using substrates that favor DSB-competent dimer assembly, or by fusing SPO11 to an artificial dimerization module. Our results inform a model in which intrinsically feeble dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation so that it happens only at the right time and the right places.
Project description:The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are non-randomly distributed across the genome. Here, we use S1Seq mapping to map the distribution of meiotic DSBs in spo11 mutant strains of Saccharomyces cerevisiae.
Project description:The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are non-randomly distributed across the genome. Here, we use Spo11-oligonucleotide complexes to map the distribution of meiotic DSBs in a spo11 mutant strain of Saccharomyces cerevisiae.
Project description:The Spo11-generated double-strand breaks (DSBs) that initiate meiotic recombination are non-randomly distributed across the genome. Here, we use Spo11-oligonucleotide complexes, a byproduct of DSB formation, to map the distribution of meiotic DSBs in pch2 and sir2 mutant strains of Saccharomyces cerevisiae.
Project description:We used ChIP-seq to assess where p53 binds in the human genome and how that binding changes during the DNA double-strand break response. In particular, we considered the 1-Mb-wide window centered on the MYC locus. Contrary to previous reports, we found no evidence of p53 binding at the MYC promoter. Rather, we identified three locations downstream of MYC at which p53 was bound; binding at each of these regions increased during the DNA double-strand break response.
Project description:CGH of stage 13 amplifying follicle cells to measure changes in replication fork progression in double-strand break repair mutants Comparative genomic hybridization was performed to compare amplification gradients of stage 13 follicle cells from several double-strand break repair mutants to wild type (OrR) gradients. Two-three replicates were done for each genotype.
Project description:In the bacterium Escherichia coli, RecG directs DNA synthesis during the repair of DNA double-strand breaks by homologous recombination. Examination of RecA binding during double-strand break repair in Escherichia coli in the presence and absence of RecG protein