Project description:With the global increase in the use of carbapenems, several gram-negative bacteria have acquired carbapenem resistance, thereby limiting treatment options. Klebsiella pneumoniae is one of such notorious pathogen that is being widely studied to find novel resistance mechanisms and drug targets. These antibiotic-resistant clinical isolates generally harbor many genetic alterations, and identification of causal mutations will provide insights into the molecular mechanisms of antibiotic resistance. We propose a method to prioritize mutated genes responsible for antibiotic resistance, in which mutated genes that also show significant expression changes among their functionally coupled genes become more likely candidates. For network-based analyses, we developed a genome-scale co-functional network of K. pneumoniae genes, KlebNet (www.inetbio.org/klebnet). Using KlebNet, we could reconstruct functional modules for antibiotic-resistance, and virulence, and retrieved functional association between them. With complementation assays with top candidate genes, we could validate a gene for negative regulation of meropenem resistance and four genes for positive regulation of virulence in Galleria mellonella larvae. Therefore, our study demonstrated the feasibility of network-based identification of genes required for antimicrobial resistance and virulence of human pathogenic bacteria with genomic and transcriptomic profiles from antibiotic-resistant clinical isolates.
Project description:Acute hepatopancreatic necrosis disease (AHPND) is a shrimp farming disease, caused by a pathogenic Vibrio parahaemolyticus carrying a plasmid encoding Vp_PirAB-like toxin (VpAHPND). Whiteleg shrimp, Litopenaeus vannamei were fed food pellets containing formalin-killed VpAHPND (FKC-VpAHPND) to select for toxin resistance. To identify genes associated with Vp_PirAB-like toxin resistance, total RNA was sequenced to identify differentially expressed genes (DEGs) in the stomach and hepatopancreas among surviving shrimp (sur-FKC), AHPND-infected shrimp (Vp-inf) and normal shrimp (control). From a total of 79,591 genes, 194 and 224 DEGs were identified in the stomach and hepatopancreas transcriptomes, respectfully. The expressions of DEGs were validated by qPCR of ten genes. Only one gene, a gene homologous to L vannamei anti-lipopolysaccharide factor AV-R isoform (LvALF AV-R), was expressed significantly more strongly in sur-FKC than in the other groups. The association of LvALF AV-R expression and toxin resistance was affirmed from the surviving shrimp in a second-trial of FKC-VpAHPND feeding. These results suggest that LvALF AV-R may be involved in shrimp defense mechanisms against Vp_PirAB-like toxin virulence.
2019-01-01 | GSE104715 | GEO
Project description:Microbial community and antibiotic resistance genes in shrimp culture environment