Project description:Tissue resident macrophages can arise from either embryonic or adult hematopoiesis and play important roles in a wide range of biological processes, such as tissue remodeling during organogenesis, tissue homeostasis in the steady state, tissue repair following injury, and immune response to pathogens. Although the origins and tissue-specific functions of resident macrophages have been extensively studied in many other tissues, they are not well characterized in skeletal muscle. In the present study, we have characterized for the first time the ontogeny of skeletal muscle resident macrophages, showing evidence that they arise from both embryonic hematopoietic progenitors, including yolk sac primitive macrophages and fetal liver monocytes, and adult bone marrow hematopoietic stem cells. Single cell-based transcriptome analysis revealed that skeletal muscle resident macrophages were highly distinctive from resident macrophages in other tissues, expressing a specific set of transcription factors and containing functionally diverse subsets correlating to their origins. They appear more active in maintaining tissue homeostasis and promoting muscle growth and regeneration.
Project description:This phase I trial studies the side effects and best dose of pembrolizumab and to see how well it works in treating younger patients with high-grade gliomas (brain tumors that are generally expected to be fast growing and aggressive), diffuse intrinsic pontine gliomas (brain stem tumors), brain tumors with a high number of genetic mutations, ependymoma or medulloblastoma that have come back (recurrent), progressed, or have not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may induce changes in the body’s immune system, and may interfere with the ability of tumor cells to grow and spread.
Project description:We carried out the analyses of chromosome variations between low-grade and high-grade gliomas in Chinese population. We found out the differences in chromosomes, cytobands, genes, pathways and GO functions. To identify the glioma tissue-specific genomic alterations and compare the genomic variations between low-grade and high-grade gliomas.
Project description:We have used Illumina Infinium HumanMethylation450 BeadChip array profiling to profile paediatric high grade gliomas and diffuse intrinsic pontine gliomas. The 450K methylation array is being used to separate brain tumour samples on the basis of their methylation profiles which represent the cell of origin the time and place in which tumours arise. Methylation arrays provide data for an integrated molecular diagnosis of brain tumours and define specific molecular subgroups and subtypes of high grade gliomas carrying distinct driver mutations and patterns of somatic alterations. These data form part of an integrated meta-analysis of high grade gliomas in children combining DNA copy number, methylation and high throughput sequencing datasets.
Project description:Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.