Project description:Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased.
Project description:We describe the first clinical isolate of Bordetella petrii from a patient with mandibular osteomyelitis. The only previously documented isolation of B. petrii occurred after the initial culture of a single strain from an environmental source.
Project description:YJB-T490 was spread on YPD-agar plates supplemented with miconazole (0.008-2ug/mL). Randomly 3 adaptors from each drug plate were sequenced. In addition, 2 miconazole adaptors derived from SC5314, and 6 adaptors derived from CDR1 deletion strain were also sequenced.
Project description:ETEC is an important human pathogen. Although the mechanism of diarrhea is known in ETEC, the regulatory networks are less understood. This study was conducted to understand the global expression of ETEC isolate E24377A under different growth and environemental conditions. ETEC isolate E24377A was grown in the presence of several chemical signals, including bile salts, glucose, and pre-conditioned media (PCM) from other enteric pathogens. E24377A was also grown to different densities, to see if a quorum sensing mechanism was in place
Project description:Vibrio parahaemolyticus is the leading cause of seafood-borne infections in the United States. We report complete genome sequences for two V. parahaemolyticus strains isolated in 2007, CDC_K4557 and FDA_R31 of clinical and oyster origin, respectively. These two sequences might assist in the investigation of differential virulence of this organism.