Project description:MS/MS data of the study that investigated the impact of moderate electric field (MEF) and shear stress (SS) on the chemical profile of a blended fruit and vegetable juice using untargeted metabolomics.
Project description:Catheter ablation is an effective treatment to prevent recurrence of Atrial fibrillation (AF) and can be used to maintain sinus rhythm and improve symptoms of AF, but to some extent it can cause a range of adverse effects associated with catheter ablation. Pulsed electric field is a newer treatment modality to replace catheter ablation for atrial fibrillation due to its fewer side effects. Different from radiofrequency ablation, which destroys diseased myocardial tissue by thermal energy, pulsed electric field ablation achieves the purpose of atrial fibrillation ablation by inducing damage to diseased myocardial cells through irreversible electroporation. However, some experimental parameters and mechanism of pulsed electric fields remain unclear.
Project description:The biochemical and molecular basis of bee pollen under drying stress is not clear. In this study, metabonomics and proteomics were used to study the biochemical regulation and phenolic compound changes in the rape bee pollen of electrohydrodynamic drying. The results show that the direct contribution rate of ionic wind and electric field to drying characteristic parameters was 68.4% and 31.6% respectively. Electric field has a greater effect on the quality parameters. Specifically, compared with ionic wind, ribosome, citric acid cycle and proteasome pathway play a more positive role in regulating the abiotic and biological biochemical responses of electric field dehydration. The protein-phenolic interaction of rape bee pollen during EHD drying led to the change of free phenolic acid content and the differential accumulation of acidmetabolic characteristics such as L-phenylalanine, L-aspartic acid and L-pyroglutamic acid. In addition, TEM observation showed that EHD drying also destroyed the integrity of cell wall structure and tapetum. The results revealed the quality formation mechanism and biochemical regulation strategy of rape bee pollen during processing.
Project description:MS/MS data of the study that investigated the impact of moderate electric field (MEF) and shear stress (SS) on the chemical profile of a blended fruit and vegetable juice using untargeted metabolomics.
Project description:The circRNA, lncRNA, miRNA, and mRNA levels of both the direct-current electric field and control groups of adipose-derived stem cells were obtained by RNA sequencing.
Project description:The scarcity of effective treatment options for high grade brain tumours has led to a wide ranging search for alternative means of therapy for these difficult to treat tumours. Electrical field therapy is one such area that has been considered. The OptuneTM system is an FDA approved novel anti-mitotic device that delivers continuous alternating electric fields to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM) (tumor treating fields - TTFields). Alternative electric fields delivery systems are also being investigated for the treatment of various cancers.To further explore alternative potential mechanisms of electric fields as a whole, we ran Optune, DBS electric fields treated and control untreated KNS42, U87 and GIN-31 (primary) cell lines on Clariom S Human Assays to produce genome-wide expression data.
Project description:Electric fishes have independently evolved six times. Most of these fish are weakly electric and they use their discharge mainly for orientation and communication. In the African weakly electric fish genus Campylomormyrus, electric organ discharge (EOD) signals are strikingly different in shape and duration among closely related species, they contribute to pre-zygotic isolation and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs (EOs) and skeletal muscle (SMs; from which the EOs derive) from three species with short (0.4 ms), medium (5 ms), and long (40 ms) EODs and two different cross-species hybrids. Using pairwise comparison of differential gene expression between EOs and SMs, we identified 1,444 up regulated genes in EO shared by all five species/hybrids cohorts, rendering them candidate genes for EO-specific properties in Campylomormyrus. To understand how gene expression contributes to the variation in EOD duration, we made cross species comparisons among species and tissue. We identified three types of EOD-duration-related expression patterns and several candidate genes, including KCNJ2, KLF5 and SLC24a2, their upregulation may contribute to increased EOD duration, along with a down-regulated gene KCNK6. Hybrids between a short (C. compressirostris) and a long (C. rhynchophorus) discharging species exhibit EODs of intermediate duration and showed imbalanced expression of KCNJ2 alleles. The preferential expression of the C. rhynchophorus allele is in line with a higher expression level in that parental species and points towards a cis-regulatory difference at this locus, relative to EOD duration. A further candidate gene, KLF5, is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an EOD. Unraveling the genetic basis of the species-specific modulation of the EOD in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.
Project description:Hybridization can act as a catalyst for rapid phenotypic evolution by introducing novel allelic combinations, which can affect hybrid phenotype through changes in gene expression. The African weakly electric fish use their muscle-derived electric organ to produce electric organ discharge (EOD) for electrocommunication and electrolocation. The EOD in genus Campylomormyrus and cross-species hybrids is usually species-specific and varies during ontogeny. We compared the gene expression patterns and allele specific expression between juvenile and adult individuals in C. compressirostris (EOD duration 0.4 ms in juvenile and 0.4 ms in adult), C. rhynchophorus (EOD duration 5 ms in juvenile and 40 ms in adult) and their hybrid (EOD duration 0.4 ms in juvenile and 4 ms in adult). Differentially expressed genes between juveniles and adults were highly enriched in “membrane”, “plasma membrane” and “cytoplasm” Go Ontogeny terms. We detected several potassium channel-related genes (e.g. KCNJ2, ADCYAP1) that are potentially involved in the EOD development during ontogeny. The alleles from C. compressirostris show dominant expression in the hybrid at juvenile and adult life stages. KCNJ2 is the only gene that exhibits allelic dominance of C. rhynchophorus allele, and has an increasing expression during ontogeny in this allele. This suggests that the EOD development in hybrids could be related to the increasing allelic expression of the C. rhynchophorus allele under the scenario of overall dominance of C. compressirostris alleles. Our study sheds light in the evolution of the electric organ discharge in electric fishes and on the role of introgressive hybridization in complex phenotypic traits.
Project description:The aim of our study was to analyze cell response to nanosecond pulsed electric field (nsPEF) at the gene expression level. TM3 Leydig cells were used as a model. Transcriptomics analysis was carried out immediately after exposure (0 h) and 4 or 24 h after treatment.