Project description:Patients with neurofibromatosis type 1 (NF1) develop benign plexiform neurofibromas that frequently progress to become malignant peripheral nerve sheath tumors (MPNSTs). A genetically engineered mouse model that accurately models plexiform neurofibroma-MPNST progression would facilitate the identification of somatic mutations driving this process. We have previously reported that transgenic mice overexpressing the growth factor neuregulin-1 in Schwann cells (P0-GGF?3 mice) develop MPNSTs. To determine whether P0-GGF?3 mice accurately model neurofibroma-MPNST progression, cohorts of these animals were followed to death and necropsied. 94% of the mice developed multiple neurofibromas, with 70% carrying smaller numbers of MPNSTs; nascent MPNSTs were identified within neurofibromas, suggesting that these sarcomas arise from neurofibromas. Although neurofibromin expression was maintained, P0-GGF?3 MPNSTs, like human NF1-associated MPNSTs, demonstrated Ras hyperactivation. P0-GGF?3 MPNSTs also showed abnormalities in the p16INK4A-cyclin D/CDK4-Rb and p19ARF-Mdm-p53 pathways analogous to their human counterparts. Array comparative genomic hybridization (CGH) demonstrated reproducible chromosomal alterations in P0-GGF?3 MPNST cells (including universal chromosome 11 gains) and focal gains and losses affecting 39 genes previously implicated in neoplasia (e.g., Pten, Tpd52, Myc , Gli1, Xiap, Bbc3/PUMA). Array CGH also identified recurrent focal copy number variations affecting genes not previously linked to neurofibroma or MPNST pathogenesis. We conclude that P0-GGF?3 mice represent a robust model of neurofibroma-MPNST progression that can be used to identify novel genes driving neurofibroma and MPNST pathogenesis. Array CGH comparison of malignant peripheral nerve sheath tumor (MPNST) cells vs non-neoplastic Schwann cells
Project description:Plexiform neurofibromas (PN) are benign nerve sheath Schwann cell tumors, common in patients with neurofibromatosis type 1 (NF1), that are characterized by biallelic mutations in the NF1 tumor suppressor gene. Atypical neurofibromas (ANF) show additional frequent loss of CDKN2A/Ink4a/Arf and may be precursor lesions of aggressive malignant peripheral nerve sheath tumors (MPNST). We combined loss of Nf1 in developing
Project description:Neurofibromatosis Type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating effects of hyperactive Ras in NF1 tumors are unknown. Cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs identified global negative feedback of genes that regulate Ras-Raf- MEK- extracellular signal-regulated protein kinase (ERK) signaling in both species. Nonetheless, activation of ERK was sustained in mouse and human neurofibromas and MPNST. PD0325901, a highly selective pharmacological inhibitor of MEK, was used to test whether sustained Ras-Raf-MEK-ERK signaling contributes to neurofibroma growth in the Nf1fl/fl;Dhh-cre mouse model or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in >80% of mice tested. PD0325901 also caused effects on tumor vasculature. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide strong rationale for testing MEK inhibitors in NF1 clinical trials. 83 microarrays: Mouse control (15), Mouse neurofibroma (15), Mouse MPNST (18); Human nerve (3), Human neurofibroma (26), Human MPNST (6) We used the same human tumor samples as in series GSE14038 (dNF, pNF and MPNST). However, instead of referencing gene expression changes to the normal human Schwann cell samples (NHSC) as we did in series GSE14038, we generated three (new) normal nerve samples (samples jan-N1-3) and referenced gene expression changes to those samples. Moreover, the analysis of series GSE14038 evaluated changes in expression between NHSC, benign tumor subtypes (dNF and pNF), and malignant tumors (MPNST), while our present submission evaluated changes between normal nerve, benign tumors (combined dNF and pNF),and malignant tumors (MPNST). The Series supplementary 'merged_data.txt' file contains the data for 9,891 transcripts that were statistically different in at least one of the two species and present in both mouse and human data sets.
Project description:Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma. Comprehensive proteomic profiles of 23 MPNST tumor specimens were obtained using LC-MS/MS. Among 23 tumor specimens, 13 patients showed favorable prognosis and 10 did local recurrence/distant metastasis.
Project description:We established a new genetically engineered mouse (GEM) model of malignant peripheral nerve sheath tumors (MPNST) based on postnatal deletion of a Nf1;Trp53 cis-conditional allele by the tamoxifen-inducible Plp-CreER (NP-Plp). We also generated two Lats1;2 conditional knockout models by using Nestin-Cre (Lats-Nes) and Plp-CreER (Lats-Plp), both of which also develop tumors similar to MPNST (GEM-PNST). To evaluate these models, transcriptome analyses were performed to compare these models and with human MPNST, plexiform neurofibromas (PNF), and neurofibromas (NF).
Project description:WES from 51 cases initially diagnosed as Malignant Nerve Sheath Tumours (MPNST) and RNA sequencing data from 10 MPNST cases. Find more information in article: Lyskjær et al, 2020, J Pathol, "H3K27me3 expression and methylation status in histological variants of malignant peripheral nerve sheath tumours".