Project description:Total RNA was purified from keratinocytes isolated from FFPE arsenic-induced skin lesion samples collected from individuals exposed to high concentrations of arsenic exceeding 50 ppb in drinking water in Murshidibad district of West Bengal, India.
2018-06-01 | GSE102892 | GEO
Project description:Bacterial diversity of agricultural soil sample of North Bengal, West Bengal, India
Project description:Russell’s viper (Daboia russelii) (RV), a category I medically important snake as well as a member of the “Big Four”, is responsible for a heavy toll of snake bite mortality and morbidity in Indian sub-continent. Epidemiological studies suggest highest incidence of RV envenomation in eastern India (EI). In this study the RV venom proteomes from Burdwan and Nadia, the two districts of West Bengal, eastern India was deciphered for the first time using tandem mass spectrometry analysis.
2018-07-16 | PXD008607 | Pride
Project description:Bacterial diversity of boron fortified agricultural soil of North Bengal, West Bengal, India
| PRJNA642224 | ENA
Project description:Bacterial metataxonomy of agricultural soil sample of North Bengal, West Bengal, India
| PRJNA733696 | ENA
Project description:Phyllosphere microbial community study at Malda, West Bengal, India
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
2013-10-30 | GSE51592 | GEO
Project description:Study of microbial diversity in plastic waste dumps at Sujapur, Kaliachak, Malda, West Bengal, India