Project description:In pluripotential reprogramming, a pluripotent state is established within somatic cells. In this study, we have generated induced pluripotent stem (iPS) cells from bi-maternal (uniparental) parthenogenetic neural stem cells (pNSCs) by transduction with four (Oct4, Klf4, Sox2, and c-Myc) or two (Oct4 and Klf4) transcription factors. The parthenogenetic iPS (piPS) cells directly reprogrammed from pNSCs were able to generate germline-competent himeras, and hierarchical clustering analysis showed that piPS cells were clustered more closer to parthenogenetic ES cells than normal female ES cells. Interestingly, piPS cells showed loss of parthenogenetic-specific imprinting patterns of donor cells. Microarray data also showed that the maternally imprinted genes, which were not expressed in pNSCs, were upregulated in piPS cells, indicating that pluripotential reprogramming lead to induce loss of imprinting as well as re-establishment of various features of pluripotent cells in parthenogenetic somatic cells. 5 samples were analyzed by microarray, each one them in duplicate. fNSC: Mouse female NSC (Neural Stem Cell) pNSC: Mouse parthenogenetic NSC (Neural Stem Cell) piPS-2F: Mouse parthenogenetic induced pluripotent cells derived from NSC overexpressing Oct4 and Klf4 pESC-B: Mouse parthenogenetic ESC (Embryonic Stem Cell) SSEA-1 sorted fESC: Mouse female ESC (Embryonic Stem Cell) OG2
Project description:In pluripotential reprogramming, a pluripotent state is established within somatic cells. In this study, we have generated induced pluripotent stem (iPS) cells from bi-maternal (uniparental) parthenogenetic neural stem cells (pNSCs) by transduction with four (Oct4, Klf4, Sox2, and c-Myc) or two (Oct4 and Klf4) transcription factors. The parthenogenetic iPS (piPS) cells directly reprogrammed from pNSCs were able to generate germline-competent himeras, and hierarchical clustering analysis showed that piPS cells were clustered more closer to parthenogenetic ES cells than normal female ES cells. Interestingly, piPS cells showed loss of parthenogenetic-specific imprinting patterns of donor cells. Microarray data also showed that the maternally imprinted genes, which were not expressed in pNSCs, were upregulated in piPS cells, indicating that pluripotential reprogramming lead to induce loss of imprinting as well as re-establishment of various features of pluripotent cells in parthenogenetic somatic cells.
Project description:Induced pluripotent stem (iPS) cells give rise to neural stem cells, which are applicable for therapeutic transplantation in treatment of neural diseases. However, generation of neural stem cells from iPS cells requires a careful selection of safe iPS clones. We sought to determine whether direct induction of neural stem cells from partially reprogrammed somatic cells is able to generate safer cells rapidly. We have successfully established direct induction system from fibroblast to neural stem cells. To characterize these directly induced neural stem cells, Gene expression profiles were compared with iPS cell or ES cell-derived neurosphere. We used affymetrix microarrays to compare the global gene expression of neurospheres prepared several method.
Project description:Induced pluripotent stem (iPS) cells give rise to neural stem cells, which are applicable for therapeutic transplantation in treatment of neural diseases. However, generation of neural stem cells from iPS cells requires a careful selection of safe iPS clones. We sought to determine whether direct induction of neural stem cells from partially reprogrammed somatic cells is able to generate safer cells rapidly. We have successfully established direct induction system from fibroblast to neural stem cells. To characterize these directly induced neural stem cells, Gene expression profiles were compared with iPS cell or ES cell-derived neurosphere. We used affymetrix microarrays to compare the global gene expression of neurospheres prepared several method. RNA extracted from neurospheres was hybridized to Affymetrix microarrays. The mouse strain used in this study except ES/iPS cells was C57BL/6.
Project description:Investigation of whole genome gene expression level changes in neural progenitor cells derived from iPS cells generated from umbilical cord mesenchymal cells, compared to neural progenitor cells derived from iPS cells generated fromskin fibroblasts. Analyze the difference between neural progenitor cells derived from iPS cells generated from different origins. The method to induce reprogramming of somatic cells and human iPS cells for neural differentiation is described in Cai J, Li W, Su H, Qin D, Yang J, et al. (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285: 11227-11234. and Kim DS, Lee JS, Leem JW, Huh YJ, Kim JY, et al. (2010) Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev 6: 270-281.
Project description:Investigation of whole genome gene expression level changes in neural progenitor cells derived from iPS cells generated from umbilical cord mesenchymal cells, compared to neural progenitor cells derived from iPS cells generated fromskin fibroblasts. Analyze the difference between neural progenitor cells derived from iPS cells generated from different origins. The method to induce reprogramming of somatic cells and human iPS cells for neural differentiation is described in Cai J, Li W, Su H, Qin D, Yang J, et al. (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285: 11227-11234. and Kim DS, Lee JS, Leem JW, Huh YJ, Kim JY, et al. (2010) Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev 6: 270-281. A two-chip study using total RNA recovered from one neural progenitor cell line derived from iPS cells generated from skin fibroblasts (GZF1C7NSCP3) and one neural progenitor cell line derived from iPS cells generated from umbilical cord mesenchymal cells (VMC2C7NSCP3). No replicates were made. Each chip measures the expression level of 45,033 genes from the two samples with fourteen 60-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:Three parthenogenetic induced pluripotent stem cell (PgHiPSCs) lines were generated from each of the ovarian teratoma cell lines (two distinct individuals). Two normal iPS cell lines were generated from normal fibroblasts. Three biological replicates of normal embryonic stem cells (H9, HESCs) were perfomed. We used microarrays to study the gene expression profiles of the PgHiPSCs, and compared the expression of genes to both embryonic and induced pluripotent stem cell, to identify paternally expressed genes that are down-regulated in the PgHiPSC lines. All parthenogenetic and normal iPS cell lines, were tested for pluripotency assays (inclusing, morphology, immuno stanings and qRT-PCR for known pluripotency markers, differentiation capacity in vivo and in vitro)