Project description:Valproic acid (VPA) is one of the most commonly used anti-epileptic drugs with pharmacological actions on GABA and blocking voltage-gated ion channels. VPA also inhibits histone deacetylase (HDAC) activity. Suberoylanilide hydroxamic acid is also a member of a larger class of compounds that inhibit HDACs. At the time of this article, there are 123 active international clinical trials for VPA (also known as valproate, convulex, divalproex, and depakote) and SAHA (vorinostat, zolinza). While it is well known that VPA and SAHA influence the accumulation of acetylated lysine residues on histones, their true epigenetic complexity remains poorly understood. Primary human cells were exposed to VPA and SAHA to understand the extent of histone acetylation (H3K9/14ac) using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Because histone acetylation is often associated with modification of lysine methylation, we also examined H3K4me3 and H3K9me3. To assess the influence of the HDAC inhibitors on gene expression, we used RNA sequencing (RNA-seq).
Project description:ISOS-1, a mouse angiosarcoma cell line, was treated with histone deacetyltransferase inhibitors (HDACI: SAHA and VPA) and a bromodomain and extraterminal domain inhibitor (BETi: JQ1).
Project description:Suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA) are both histone deacetylases inhibitor (HDACi), and are able to attenuate the activation of hepatic stelllate cells. To explore the underlying molecular mechanisms, we performed gene expression profile analyses of human hepatic stellate cell line LX2 treated with SAHA or VPA for 24 hours. Duplicate experiments were performed: Untreated LX2, SAHA treated LX2 and VPA treated LX2.
Project description:Suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA ) are both histone deacetylases inhibitor (HDACi), and are able to attenuate the activation of hepatic stelllate cells. To explore the underlying molecular mechanisms, we performed miRNA expression profile analyses of human hepatic stellate cell line LX2 treated with SAHA or VPA for 24 hours. Duplicate experiments were performed: Untreated LX2, SAHA treated LX2 and VPA treated LX2.
Project description:Total RNA was extrected from HiDEP-1 (Immortalized erythroid cell line derived from human induced pluripotent stem cells; PMID: 23533656) cultured with HDAC inhibitors, Fluoro-SAHA (FS) or M344 or Valproic acid (VPA), for 24 hours using Rneasy Mini Kit (QIAGEN) by following the manufacture's protocol. After the quality/quantity determination, RNA was subjected to expression analyses using Affymetrix GeneChip® Array / Human Gene 2.0 ST Array
Project description:Background: Histone deacetylase (HDAC) is strongly associated with epigenetic regulation and carcinogenesis, and its inhibitors induce the differentiation or apoptosis of cancer cells. Valproic acid (VPA) is one of the clinically available HDAC inhibitors. We investigated the anticancer effects of VPA in combination with gemcitabine (GEM) in cholangiocarcinoma cell line, and explored the mechanisms of the anticancer effects using microarray analysis. Methods: A human cholangiocarcinoma cell line (HuCCT1) was used. The anticancer effects of VPA, or gemcitabine (GEM), and the effects of VPA combined with GEM, were studied by cell proliferation assay. The microarray analysis was performed, the genes were picked up using Gene Spring GX11.5, Ingenuity Pathways Analysis (IPA) was performed, and then the gene-expression was determined by RT-PCR. Results: GEM (5nM) and VPA (0.5mM) reduced by 23%, which significantly augmented the anticancer effect of GEM alone or VPA alone (P<0.01). Using the microarray analysis, forty-three genes were identified with the comparison between GEM group and GEM plus VPA combination group. The interactions were shown between genes of the “Cellular Development” relevant to the differentiation of cancer cell using IPA.
Project description:Co-targeting the plasticity and heterogeneity of cancer is fundamental to achieve and maintain complete remission (CR). We exploited murine models of acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia driven by the promyelocytic leukemia/retinoic acid receptor (PML-RARα) oncofusion protein, which recruits histone deacetylase (HDAC)-containing complexes. We investigated the effect of two HDAC inhibitors: valproic acid (VPA), and SAHA/vorinostat with all-trans retinoic acid (ATRA), on the bulk cells and LICs of two APLs with different LIC frequencies. VPA and SAHA selectively target the bulk APL cells and LICs respectively. VPA+SAHA+ATRA combination induced CR in an APL model with lower LIC frequency.