Project description:Purpose: Brassica. juncea is vulnerable to abiotic stresses at specific stages in its life cycle. However, till date no attempts have been made to elucidate the genome-wide changes in the transcriptome of B. juncea subjected to either high temperature or drought stress. Hence, to gain global insights into genes, transcription factors and kinases regulated by these stresses and to provide basic information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de novo assembly to discover B. juncea transcriptome associated with high temperature and drought. Results: We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS) from control, high temperature treated and drought treated seedlings of Brassica juncea. More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPde-novo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Investigation of identified transcription factors revealed that 92 responded to high temperature, 72 exhibited alterations in expression during drought stress, and 60 were commonly associated with both the stresses. Similarly, 217, 259 and 193 kinases were responsive to high temperature, drought or both stresses, respectively. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. Conclusions: Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resources generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity. Total three RNA-Seq libraries were prepared and sequenced independently [B. juncea control (BC), B. juncea high temperature stressed (BHS) and B. juncea drought stressed (BDS) on Illumina GAIIx sequencer].
Project description:In low rainfall regions soils are naturally conditioned with frequent co-occurrence of salinity and alkalinity. Plant salinity responses both at physiological and molecular level have been extensively researched. However, effects of the combined treatment of alkaline salinity that could greatly reduce plant growth and the mechanisms responsible for tolerance remain indeterminate. In Brassica juncea, large reductions in biomass and increased leaf Na+ concentration under alkaline salinity indicates that the combined treatment had greater negative effect than salinity on both growth and the physiological responses of the plant. To determine molecular mechanisms potentially controlling adaptive tolerance responses to salinity and alkaline salinity, the moderately tolerant genotype NDR 8501 was further investigated using microarray analysis. The transcripts of treated leaf tissues verses those of the untreated control sample were analysed after prolonged stress of four weeks. In total, 528 salinity responsive and 1245 alkaline salinity responsive genes were indentified and only 101 genes were expressed jointly in either of the two treatments. Transcription of 37% more genes involved in response to alkaline salinity than salinity alone, which suggests the increased impact and severity of the combined stress on the plant, indicating the transcription of a far greater number of genes likely involved in mitigation and damage control. Transcription of KUP2 and KUP7 genes involved in potassium homeostasis under salinity alone and NHX1 and ENH1 genes for ion (K+ and Na+) homeostasis under alkaline salinity, clearly demonstrated that different genes and genetic pathways are involved in response to each stress. They further provide supporting evidence for the physiological responses that occur in the plant, with massive reprogramming of the transcriptome leading to partial ion exclusion, shuttling and compartmentation. Salinity and alkaline salinity induced gene expression in Brassica juncea leaf was measured at 4 weeks of prolonged treatment of 50 mM NaCl alone and combined with 2.5 mM HCO3- versus non-stressed control. A single experiment was conducted using Brassica juncea genotype NDR 8501 at a single time point (fours weeks after treatment) with three replications per treatment.
Project description:Purpose: Brassica. juncea is vulnerable to abiotic stresses at specific stages in its life cycle. However, till date no attempts have been made to elucidate the genome-wide changes in the transcriptome of B. juncea subjected to either high temperature or drought stress. Hence, to gain global insights into genes, transcription factors and kinases regulated by these stresses and to provide basic information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de novo assembly to discover B. juncea transcriptome associated with high temperature and drought. Results: We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS) from control, high temperature treated and drought treated seedlings of Brassica juncea. More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPde-novo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Investigation of identified transcription factors revealed that 92 responded to high temperature, 72 exhibited alterations in expression during drought stress, and 60 were commonly associated with both the stresses. Similarly, 217, 259 and 193 kinases were responsive to high temperature, drought or both stresses, respectively. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. Conclusions: Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resources generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity.
Project description:Here, we employed high-throughput sequencing to identify microRNAs in CMS and its maintainer fertile (MF) lines of Brassica juncea. We identified 197 known and 78 new candidate microRNAs during reproductive development of B. juncea. A total of 47 differentially expressed microRNAs between CMS and its maintainer fertile lines were discovered, according to their sequencing read number.
Project description:Here, we employed high-throughput sequencing to identify microRNAs in CMS and its maintainer fertile (MF) lines of Brassica juncea. We identified 197 known and 78 new candidate microRNAs during reproductive development of B. juncea. A total of 47 differentially expressed microRNAs between CMS and its maintainer fertile lines were discovered, according to their sequencing read number. Two samples from floral buds of CMS and MF lines.
Project description:Oilseed mustard, Brassica juncea, exhibits high levels of genetic variability for salinity tolerance. To obtain the global view of transcriptome and investigate the molecular basis of salinity tolerance in a salt-tolerant variety CS52 of B. juncea, we performed transcriptome sequencing of control and salt-stressed seedlings. De novo assembly of 184 million high-quality paired-end reads yielded 42,327 unique transcripts longer than 300 bp with RPKM ≥1. When compared with non-redundant proteins, we could annotate 67% unigenes obtained in our study. Based on the mapping to expressed sequence tags (ESTs), 52.6% unigenes are novel compared to EST data available for B. juncea and constituent genomes. Differential expression analysis revealed altered expression of 1469 unigenes in response to salinity stress. Of these, 587, mainly associated with ROS detoxification, sulfur assimilation and calcium signaling pathways, are up regulated. Notable of these is RSA1 (SHORT ROOT IN SALT MEDIUM 1) INTERACTING TRANSCRIPTION FACTOR 1 (RITF1) homolog up regulated by >100 folds in response to stress. RITF1, encoding a bHLH transcription factor, is a positive regulator of SOS1 and several key genes involved in scavenging of salt stress-induced reactive oxygen species (ROS). Further, we performed comparative expression profiling of key genes implicated in ion homeostasis and sequestration (SOS1, SOS2, SOS3, ENH1, NHX1), calcium sensing pathway (RITF1) and ROS detoxification in contrasting cultivars, B. juncea and B. nigra, for salinity tolerance. The results revealed higher transcript accumulation of most of these genes in B. juncea var. CS52 compared to salt-sensitive cultivar even under normal growth conditions. Together, these findings reveal key pathways and signaling components that contribute to salinity tolerance in B. juncea var. CS52. We report transcriptome sequencing of two-weeks-old seedlings of B. juncea var. CS52 under normal growth conditions (CTRL) and in response to salinity stress (SS) using Illumina paired-end sequencing
Project description:In this study, time dependent (4 h to 96 h) transcriptome changes in roots and shoots of Brassica juncea were analyzed under arsenate (AsV) stress by using Agilent platform. A total of 1285 genes showed significant change in expression pattern upon arsenate (AsV) exposure. The genes belonged to various signaling pathways including hormones (jasmonate, abscisic acid (ABA), auxin and ethylene) and kinases. Significant effects were also noticed on genes of sulfur, nitrogen, CHO, and lipid metabolisms along with photosynthesis. These studies indicated interconnections among sulfur metabolism, jasmonate and kinase signaling pathways. Transcriptome results and biochemical analyses highlight that signaling and metabolic pathways work in a dynamic coordination to perceive and respond to the stress.
2015-03-04 | GSE66464 | GEO
Project description:Transcriptome analysis the purple leaf formation in Brassica juncea