Project description:The CRISPR-derived endoribonuclease Csy4 is a popular tool for controlling transgene expression in various therapeutically relevant settings, but adverse effects potentially arising from non-specific RNA cleavage remains largely unexplored. Here, we report a split-Csy4 architecture that was carefully optimized for in vivo usage. First, we separated Csy4 into two independent protein moieties whose full catalytic activity can be restored via various constitutive or conditional protein dimerization systems. Next, we show that introduction of split-Csy4 into human cells caused a substantially reduced extent in perturbation of the endogenous transcriptome when directly compared to full-length Csy4. Inspired by these results, we went on to use such split-Csy4 module to engineer inducible CRISPR- and translation-level gene switches regulated by the FDA-approved drug grazoprevir. This work provides valuable resource for Csy4-related biomedical research and discusses important issues for the development of clinically eligible regulation tools.
Project description:Purpose: Mutations in TP53 induce autoantibody immune responses in a subset of cancer patients, which have been proposed as biomarkers for early detection. Here, we investigate the association of p53 specific autoantibodies with multiple tumor subtypes and determine the association with p53 mutation status and epitope specificity. Experimental Design: IgG p53 autoantibodies (p53-AAb), were quantified in 412 serum saples using a programmable ELISA assay from patients with serous ovarian, pancreatic adenocarcinoma, and breast cancer. To determine if patients generated mutation specific autoantibodies we designed a panel of the most relevant 51 p53 point mutant proteins, to be displayed on custom programmable protein microarrays. To determine the epitope specificity we displayed 12 overlapping tiling fragments and 38 N- and C-terminal deletions spanning the length of the wild-type p53 proteins. Results: We detected p53-AAb with sensitivities of 58.8% (ovarian), 22% (pancreatic), 32% (triple negative breast cancer), and 10.2% (HER2+ breast cancer) at 94% specificity. Sera with p53-AAb contained broadly-reactive autoantibodies to 51 displayed p53 mutant proteins, demonstrating a polyclonal response to common epitopes. All p53-AAb displayed broad polyclonal immune response to both continuous and discontinuous epitopes at the N- and C-terminus as well as the DNA binding domain. Conclusion and clinical relevance: In this comprehensive analysis, mutations in tumor p53 induce strong, polyclonal autoantibodies with broadly reactive epitope specificity. The immunoreactivity was compared between 60 pancreactic ductal adenocarcinoma cases and 63 benign pancreatic disease controls against 52 unique mutant p53 and 379 human proteins that were printed on microscope slides. [Contributor] Arizona State University
Project description:Techniques for exclusion of exons from mature transcripts have been applied as gene therapies for treating many different diseases. Since exon skipping has been traditionally accomplished using technologies that have a transient effect, it is particularly important to develop new techniques that enable permanent exon skipping. We have recently demonstrated that this can be accomplished using cytidine base editors for permanently disabling the splice acceptor of target exons. We now demonstrate the application of adenine-deaminase base editors to disrupt the conserved adenosine within splice acceptor sites for programmable exon skipping. We also demonstrate that by altering the amino acid sequence of the linker between the adenosine deaminase domain and the Cas9 nickase or by coupling the adenine base editor with a uracil glycosylase inhibitor, the DNA editing efficiency and exon skipping rates improve significantly. Finally, we developed a split base editor architecture compatible with adeno-associated viral packaging. Collectively, these results represent significant progress towards permanent in vivo exon skipping through base editing and, ultimately, a new modality of gene therapy for the treatment of genetic diseases.
Project description:Prime editor (PE) is a precise genome-editing tool capable of all possible base conversions, as well as insertions and deletions without DSBs or donor DNA. The efficient delivery of PE in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), editing efficiency at different gene loci varies among split sites, and efficient split sites within Cas9 nickase are limited. In this study, by screening multiple split sites, we demonstrated a series of efficient split site when delivering PE by dual-AAV. Additionally, we utilized a feature reported by others recently that RNase could be detached from the Cas9n and designed split sites in the first half of Cas9n. To test the editing efficiency in vivo, a novel dual-AAV split-ePE3 was packaged in AAV9 and delivered via tail vein injection in mice, achieving 24.4% precise genome editing 3 weeks post-injection. Our findings establish an alternative split-PE architecture that could achieve robust gene editing efficiency, facilitating the potential utility both in model organisms and as a therapeutic modality.
Project description:We report transcriptome wide edits comparison between split-engineered base editors and intact base editors. Our results show that, split-engineered base editors show backgound levels of unique C>U edits when compared to intact base editors.
Project description:We generated Split-Cre transgenic mice strains to target microglia or Lyve1+ macrophages in the brain. To obtain translatome from the each population, Split-Cre mice were crossed with Ribo-tag reporter mice, and translatome were acquired with anti-HA antibody immuno-percipitation.
Project description:Prime editor (PE) is a precise genome-editing tool capable of all possible base conversions, as well as insertions and deletions without DSBs or donor DNA. The efficient delivery of PE in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), editing efficiency at different gene loci varies among split sites, and efficient split sites within Cas9 nickase are limited. In this study, by screening multiple split sites, we demonstrated a series of efficient split site when delivering PE by dual-AAV. Additionally, we utilized a feature reported by others recently that RNase could be detached from the Cas9n and designed split sites in the first half of Cas9n. To test the editing efficiency in vivo, a novel dual-AAV split-ePE3 was packaged in AAV9 and delivered via tail vein injection in mice, achieving 24.4% precise genome editing 3 weeks post-injection. Our findings establish an alternative split-PE architecture that could achieve robust gene editing efficiency, facilitating the potential utility both in model organisms and as a therapeutic modality.