Project description:Here we developed a new approach to sepsis diagnosis that integrates host transcriptional profiling with metagenomic broad-range pathogen detection from cell-free plasma RNA and DNA.
Project description:Here we developed a new approach to sepsis diagnosis that integrates host transcriptional profiling with metagenomic broad-range pathogen detection from cell-free plasma RNA and DNA.
Project description:Three separate experiments were carried out using MeDIP-seq and cfMeDIP-seq for methylome analysis. For the first experiment, different starting amounts of HCT116 cell line DNA, sheared to mimic cell-free DNA, were analyzed using MeDIP-seq and cfMeDIP-seq. In the second experiment the limit of detection of cfMeDIP-seq was tested using varying dilutions of colorectal cancer cell line DNA (HCT116) with multiple myeloma cell line DNA (MM1.S). For both cell line DNA samples, the DNA was sheared to mimic cell-free DNA. In the final experiment, we tested the enrichment of human ctDNA using cfMeDIP-seq performed on plasma collected from patient-derived xenografts (PDXs) generated in mice from two colorectal cancer patients.
2018-04-01 | GSE79838 | GEO
Project description:cell-free DNA sequencing of plasma
Project description:Sampling the live brain is difficult and dangerous, and withdrawing cerebrospinal fluid is uncomfortable and frightening to the subject, so new sources of real-time analysis are constantly sought. Cell-free DNA (cfDNA) derived from glia and neurons offers the potential for wide-ranging neurological disease diagnosis and monitoring. However, new laboratory and bioinformatic strategies are needed. DNA methylation patterns on individual cfDNA fragments can be used to ascribe their cell-of-origin. Here we describe bisulfite sequencing assays and bioinformatic processing methods to identify cfDNA derived from glia and neurons. In proof-of-concept experiments we describe the presence of both glia- and neuron-cfDNA in the blood plasma of human subjects following mild trauma. These detection of glia- and neuron-cfDNA represents a significant step forward in the translation of liquid biopsies for neurological diseases.
Project description:Interventions: Gold Standard:;Index test:
Primary outcome(s): concentration of cell-free DNA in plasma;integrity of cell-free DNA in plasma
Study Design: Diagnostic test: case-control