Project description:Effect of FLO8 or MSS11 deletion and -overexpression on yeast transcript profiles compared to wild type in laboratory yeast strains Σ1278b and S288c.
Project description:The homologous Ace2 and Swi5 transcription factors of Saccharomyces cerevisiae have identical DNA-binding domains, and both are cell cycle regulated. There are common target genes, as well as genes activated only by Ace2 and other genes activated only by Swi5. Keywords: genetic modification RNA was isolated from four strains: wild type, ace2 gene deletion, swi5 gene deletion, and the ace2 swi5 double gene deletion. RNAs from the three mutant strains were compared to wild type RNA in a microarray hybridization experiment.
Project description:Interventions: Case series:Nil
Primary outcome(s): intestinal microecological disorders;blood non-coding RNAs and immune status
Study Design: Randomized parallel controlled trial
Project description:Growth assay in the presence of a toxic chemical (sr7575) that uses the barcoded collections of yeast gene deletions (haploid, diploid, DamP) to identify deletion strains that are hypersensitive to the drug.
Project description:The polymerase associated factor 1 complex (Paf1C) is a multifunctional epigenetic regulator of RNA polymerase II (Pol II) transcription. Paf1C controls gene expression by stimulating the placement of co-transcriptional histone modifications, influencing nucleosome occupancy in coding regions, facilitating transcription termination, and regulating nuclear export of RNAs. In this study, we investigate the extent to which these functions of Paf1C combine to influence the Saccharomyces cerevisiae transcriptome. Using conditions that enrich for unstable transcripts, we show that deletion of PAF1 affects all classes of Pol II-transcribed RNAs including multiple classes of noncoding transcripts. Gene ontology analysis revealed that mRNAs encoding genes involved in iron and phosphate homeostasis were differentially affected by deletion of PAF1. We further investigated these two groups of mRNAs with the goal of identifying overarching mechanisms of up and down-regulation in cells lacking Paf1. Our results indicate that only a subset of the observed changes result from loss of Paf1C-promoted histone modifications. We also found that transcription of the FET4 gene is differentially regulated by Paf1 and an upstream CUT. Together these data highlight the complexity of the epigenetic regulation of Pol II transcription imposed by Paf1C and identify a role for Paf1C in promoting CUT transcription.