Project description:The central nervous system (CNS), despite the presence of strategically positioned anatomical barriers designed to protect it, is not entirely isolated from the immune system1,2. In fact, it remains physically connected to and can be influenced by the peripheral immune system. How the CNS retains such responsiveness while maintaining an immunologically unique status remains an outstanding conundrum. In searching for molecular cues that derive from the CNS and allow its direct communication with the immune system, we discovered a repertoire of CNS-derived endogenous regulatory self-peptides presented on major histocompatibility complex (MHC) II molecules at the CNS borders. During homeostasis, a preponderance of these regulatory self-peptides were found to be bound to MHC II molecules throughout the path of lymphatic drainage from the brain to its surrounding meninges and its draining cervical lymph nodes. With neuroinflammatory disease, however, the presentation of regulatory self-peptides diminished. Upon boosting the presentation of these regulatory self-peptides, a population of suppressor CD4+ T cells could be expanded, controlling CNS autoimmunity in a CTLA-4 and TGF dependent manner. This unexpected discovery of CNS-derived autoimmune self-peptides may be the molecular key adapting the CNS to maintain continuous dialogue with the immune system while balancing overt autoreactivity. This sheds new light on how we conceptually think about and therapeutically target neuroinflammatory and neurodegenerative diseases.
Project description:The central nervous system (CNS), despite the presence of strategically positioned anatomical barriers designed to protect it, is not entirely isolated from the immune system1,2. In fact, it remains physically connected to and can be influenced by the peripheral immune system. How the CNS retains such responsiveness while maintaining an immunologically unique status remains an outstanding conundrum. In searching for molecular cues that derive from the CNS and allow its direct communication with the immune system, we discovered a repertoire of CNS-derived endogenous regulatory self-peptides presented on major histocompatibility complex (MHC) II molecules at the CNS borders. During homeostasis, a preponderance of these regulatory self-peptides were found to be bound to MHC II molecules throughout the path of lymphatic drainage from the brain to its surrounding meninges and its draining cervical lymph nodes. With neuroinflammatory disease, however, the presentation of regulatory self-peptides diminished. Upon boosting the presentation of these regulatory self-peptides, a population of suppressor CD4+ T cells could be expanded, controlling CNS autoimmunity in a CTLA-4 and TGF dependent manner. This unexpected discovery of CNS-derived autoimmune self-peptides may be the molecular key adapting the CNS to maintain continuous dialogue with the immune system while balancing overt autoreactivity. This sheds new light on how we conceptually think about and therapeutically target neuroinflammatory and neurodegenerative diseases.
Project description:The central nervous system (CNS), despite the presence of strategically positioned anatomical barriers designed to protect it, is not entirely isolated from the immune system1,2. In fact, it remains physically connected to and can be influenced by the peripheral immune system. How the CNS retains such responsiveness while maintaining an immunologically unique status remains an outstanding conundrum. In searching for molecular cues that derive from the CNS and allow its direct communication with the immune system, we discovered a repertoire of CNS-derived endogenous regulatory self-peptides presented on major histocompatibility complex (MHC) II molecules at the CNS borders. During homeostasis, a preponderance of these regulatory self-peptides were found to be bound to MHC II molecules throughout the path of lymphatic drainage from the brain to its surrounding meninges and its draining cervical lymph nodes. With neuroinflammatory disease, however, the presentation of regulatory self-peptides diminished. Upon boosting the presentation of these regulatory self-peptides, a population of suppressor CD4+ T cells could be expanded, controlling CNS autoimmunity in a CTLA-4 and TGF dependent manner. This unexpected discovery of CNS-derived autoimmune self-peptides may be the molecular key adapting the CNS to maintain continuous dialogue with the immune system while balancing overt autoreactivity. This sheds new light on how we conceptually think about and therapeutically target neuroinflammatory and neurodegenerative diseases.
Project description:The central nervous system (CNS), despite the presence of strategically positioned anatomical barriers designed to protect it, is not entirely isolated from the immune system. In fact, it remains physically connected to and can be influenced by the peripheral immune system. How the CNS retains such responsiveness while maintaining “immune privilege” remains an outstanding conundrum. In searching for molecular cues that derive from the CNS and allow its direct communication with the immune system, we discovered a repertoire of CNS-derived endogenous guardian peptides presented on major histocompatibility complex (MHC) II molecules at the CNS borders. During homeostasis, a preponderance of these guardian peptides were found to be bound to MHC II molecules throughout the path of lymphatic drainage from the brain to its surrounding meninges and its draining cervical lymph nodes. With neuroinflammatory disease, however, the presentation of guardian peptides was diminished. Fascinatingly, boosting the presence of these guardian peptides reinforced a population of suppressor CD4+ T cells and significantly reduced CNS autoimmune disease. This unexpected discovery of CNS-derived autoimmune guardian peptides may be the molecular key adapting the CNS to receive information and to maintain continuous dialogue with the immune system while balancing overt autoreactivity. This sheds new light on how we conceptually think about and therapeutically target neuroinflammatory and neurodegenerative diseases.
Project description:Multiple Sclerosis (MS) is a complex disease of the CNS believed to require one or more environmental triggers and is characterized by episodic formation of inflammatory demyelinating lesions in the brain and spinal cord. Gut dysbiosis is a common feature in MS and here, using enhanced and quantitative PCR detection, we show that people with MS are more likely to harbor and have higher abundance of epsilon toxin (ETX)-producing strains of Clostridium perfringens within their gut microbiome compared to healthy controls (HC). MS patient-derived isolates produce functional ETX and have a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, we find that ETX can substitute for PTX in disease induction. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE results in multifocal demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the lesion distribution observed in MS. Transcriptional profiles from CNS endothelial cells reveal ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings support ETX-producing strains of C. perfringens as biologically plausible pathogens in MS to trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.
Project description:Traumatic injuries to the central nervous system (CNS) affect millions of people worldwide yet lack an effective treatment. These injuries contain infiltrating immune cells that can promote tissue repair and could be exploited for therapeutic benefit. Here, using single-cell RNA-sequencing of T cells infiltrating the injured CNS we demonstrate their clonal expansion and antigen specificity towards CNS derived self-peptides. We confirm the beneficial effect of these injury-associated autoimmune CD4+ T cells in murine models of optic nerve and spinal cord injury. Subsequently, using mRNA-based transient T cell receptor (TCR) reconstitution, we demonstrate a therapeutic T cell strategy to alleviate CNS injury. Treatment of CNS-injured mice with this therapy improved locomotion and alleviated histological signs of damage, through regulation of myeloid cells, without detrimental autoimmune side effects. This strategy provides a means of developing custom-designed T cell therapies for CNS injury, and possibly for other neurodegenerative disorders.
Project description:Traumatic injuries to the central nervous system (CNS) affect millions of people worldwide yet lack an effective treatment. These injuries contain infiltrating immune cells that can promote tissue repair and could be exploited for therapeutic benefit. Here, using single-cell RNA-sequencing of T cells infiltrating the injured CNS we demonstrate their clonal expansion and antigen specificity towards CNS derived self-peptides. We confirm the beneficial effect of these injury-associated autoimmune CD4+ T cells in murine models of optic nerve and spinal cord injury. Subsequently, using mRNA-based transient T cell receptor (TCR) reconstitution, we demonstrate a therapeutic T cell strategy to alleviate CNS injury. Treatment of CNS-injured mice with this therapy improved locomotion and alleviated histological signs of damage, through regulation of myeloid cells, without detrimental autoimmune side effects. This strategy provides a means of developing custom-designed T cell therapies for CNS injury, and possibly for other neurodegenerative disorders.