Project description:Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR encodes a transcription factor annotated as PHA (polyhydroxyalkanoate) accumulation regulator. We found that PhaR not only controls the PHA cycle but also acts as a global regulator of excess carbon allocation by controlling the expression of fixK2 and nifA genes, both encoding key transcription factors for microoxic and symbiotic metabolism in B. diazoefficiens. The function of PhaR was expanded by a multi-pronged approach that includes analysis of the effects of phaR mutation at transcriptional and protein levels of putative PhaR targets and direct control mediated by PhaR determined by EMSA assays. We also were able to identify PhaR, phasins and other proteins associated with PHA granules which confirmed a global function of PhaR in microoxia.