Project description:The soft coral Scleronephthya gracillimum is an azooxanthellate octocoral order Alcyonacea. In this study, stress responses to increased seawater temperature and marine acidification were investigated using a microarray. The S. gracillimum microarray was constructed. The S. gracillimum microarray was constructed after RNA-seq. Oligonucleotides were picked from UniGene of S. gracillimum and the clones were annotated using Blast.
Project description:In this study we performed comprehensive analysis of changes in cell survival, vital parameters, plasticity, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196ºC to -100ºC in less than 20 cycles in comparison to constant temperature storage. However, increasing of the temperature range to -80ºC as well as increasing the number of cycles, leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Plasticity of placental MSCs was not compromised neither after cryopreservation with constant end temperatures nor with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, plasticity and transgene expression are not compromised during studied storage conditions, while certain gene regulation is observed.
Project description:Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and is able to tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in their leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions under simulated Saudi Arabian summer and winter climates followed by drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current results show that protein reprogramming of date palm leaves contribute to heat and drought tolerance. We conclude that the protein plasticity of date palm is one important mechanism of molecular adaptation to remarkable environmental fluctuations.
2022-02-16 | PXD021666 | Pride
Project description:Responses to ambient temperature fluctuations
Project description:Poplar (Populus trichocarpa, clone Nisqually-1) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity. Diurnal (driven) conditions included 12L:12D light cycles and 25C/12C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (25C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (25C) and a low night temperature (12C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (25C, day; 12C, night). Light intensity and relative humidity were 700 micromol m-2s-2 and 50%, respectively. Three-month-old poplar plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual poplar plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.
Project description:Rice (Oryza sativa, spp. Indica, cv. 93-11) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.
Project description:Plants coordinate their growth and developmental programs with various endogenous signals and environmental challenges such as seasonal and diurnal temperature fluctuations. The bHLH transcription factor PIF4 plays critical roles in thermoresponsive hypocotyl growth in Arabidopsis, and the evening complex component ELF3 negatively regulates PIF4's activity for downstream gene expression and hypocotyl elongation at elevated temperature. However, how warm temperature signal is transmitted to ELF3 is not known. Here, we report the identification of two B-Box protein BBX18/BBX23 as new regulators of thermomorphogenesis in Arabidopsis. Mutations of BBX18/BBX23 confer reduced thermoresponsive hypocotyl elongation. Overexpression of BBX18 enhances the sensitivity of hypocotyl growth to elevated temperature, which is dependent on the function of PIF4 and RING E3 ligase COP1, respectively. Both BBX18 and BBX23 interact with ELF3 or COP1, relegating the protein abundance of ELF3 at warm temperature. Further, the expression of multiple thermoresponsive genes is impaired in both the PIF4 single mutant and BBX18/BBX23 double mutant. In addition, both the transcription and protein levels of BBX18/BBX23 are up-regulated by elevated ambient temperature. Thus, our findings reveal the important roles of B-Box proteins in plant thermomorphogenesis, and build a new connection from warm temperature information to ELF3 and its downstream signaling components.
Project description:Transcript profiling was performed on samples derived from plants grown under long day conditions. Time series were harvested under diurnal (L/D; light/dark cycles) at control temperature (20 C) and cold (4 C); and under circadian conditions (L/L; continuous light) at control temperature (20 C). Leaves were sampled at time 0 and after 2 h (to coincide with light-dark transitions) and then every 4 h until 58 h.
Project description:Rice (Oryza sativa, ssp. Japonica, cv. Nipponbare 1) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.<br>
Project description:Plant growth and survival depends to a large extent on the diurnal regulation of cellular processes. Although extensively studied at the transcript level, notably less is known about diurnal fluctuations at the protein level. Here, we report a high-resolution quantitative time-course of the Arabidopsis rosette proteome and phosphoproteome over a 12 h light:12 h dark diel cycle. We monitored the proteome every 2 h and the phosphoproteome immediately before and after the light-to-dark and dark-to-light transitions. Notably, we quantified nearly 5000 proteins and 1800 phosphopeptides, of which 288 and 225, respectively, were found to fluctuate over the time-course. Diurnal proteome and phosphoproteome changes were related to diverse biological processes, including protein translation, light detection, photosynthesis, metabolism and transport. Together, these datasets represent the most comprehensive proteomic analysis of Arabidopsis rosettes to date, allowing us to make multi-level inferences about the diurnal regulation of key cellular plant processes plants.