Project description:Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that while skin TRM cells strictly require TGF-β for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive the TRM cells in the small intestine.
Project description:Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that while skin TRM cells strictly require TGF-β for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive the TRM cells in the small intestine.
Project description:Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that while skin TRM cells strictly require TGF-β for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive the TRM cells in the small intestine.
Project description:Tissue-resident CD8+ memory T (TRM) cells are immune cells that permanently reside at tissue sites where they play an important role in providing rapid protection against reinfection. They are not only phenotypically and functionally distinct from their circulating memory counterparts, but also exhibit a unique transcriptional profile. To date, the local tissue signals required for their development and long-term residency are not well understood. So far, the best-characterised tissue-derived signal is transforming growth factor-β (TGF-β), which has been shown to promote the development of these cells within tissues. In this study, we aimed to determine to what extent the transcriptional signatures of TRM cells from multiple tissues reflects TGF-β imprinting. We activated murine CD8+ T cells, stimulated them in vitro by TGF-β, and profiled their transcriptomes using RNA-seq. Upon comparison, we identified a TGF-β-induced signature of differentially expressed genes between TGF-β-stimulated and -unstimulated cells. Next, we linked this in vitro TGF-β-induced signature to a previously identified in vivo TRM-specific gene set and found considerable (>50%) overlap between the two gene sets, thus showing that a substantial part of the TRM signature can be attributed to TGF-β signalling. Finally, gene set enrichment analysis further revealed that the altered gene signature following TGF-β exposure reflected transcriptional signatures found in TRM cells from both epithelial and non-epithelial tissues. In summary, these findings show that TGF-β has a broad footprint in establishing the residency-specific transcriptional profile of TRM cells, which is detectable in TRM cells from diverse tissues. They further suggest that constitutive TGF-β signaling might be involved for their long-term persistence at tissue sites.
Project description:Pattens of tissue-residency differs between CD4+ and CD8+ memory T cells in evironmentally exposed organs. The lineage-controlling transcription factor Runx3, expressed in CD8+ T cells, is responsible for shaping a tissue-resident gene network in response to the cytokine TGF-b. While the lack of Runx3 by CD4+ T cells precludes these transcriptional changes, Runx3-overexpression in CD+ T cells enable phenotypical, transcriptional and functional changes to allow residency.
Project description:γδ T cells perform heterogeneous functions in homeostasis and disease across tissues. However, it is unclear whether these roles correspond to distinct γδ subsets or to a homogeneous population of cells exerting context-dependent functions. Here, by cross-organ multimodal single-cell profiling, we reveal that various mouse tissues harbor unique site-adapted γδ subsets. Epidermal and intestinal intraepithelial γδ T cells are transcriptionally homogeneous and exhibit epigenetic hallmarks of functional diversity. Through parabiosis experiments, we uncovered cellular states associated with cytotoxicity, innate-like rapid IFN-γ production and tissue repair functions displaying tissue residency hallmarks. Notably, our observations nuance the link between IL-17-producing γδ T cells and tissue residency. Moreover, transcriptional programs associated with tissue-resident γδ T cells are analogous to those of CD8+ tissue-resident memory T cells. Altogether, this study provides the first multimodal landscape of tissue-adapted γδ T cells, revealing heterogeneity, lineage relationships and their tissue residency program.